
Package Views - a more flexible infrastructure for third-party
software.

Alistair Crooks, Wasabi Systems, agc@wasabisystems.com

6th January 2004

Abstract

Firstly, conventional systems for installation of third party
software, including FreeBSD’s ports system, NetBSD’s
pkgsrc, and OpenBSD’s ports system, are analysed and
compared. In addition, other approaches and infrastruc-
ture layouts within the industry are examined. One of the
main problems faced by users of the various systems is
the means by which multiple versions of a package, or
packages which “conflict” with each other, can co-exist at
the same time.

To address that, a new system is proposed to allow any
number of different versions of packages to co-exist at any
one time, and the importance of dynamic packing lists is
discussed. The new infrastructure is then described in de-
tail, including the practical aspects of managing a large
number of third party packages across a number of differ-
ent operating systems.

Finally, the lessons learned from its deployment within
the NetBSD pkgsrc infrastructure are drawn.

1 Third-party software

In the BSD world, it is not the norm to have software au-
tomatically packaged for you. That is the prerogative of
operating environments such as Windows and Linux (al-
though different Linux distributors matter to this equa-
tion). Because of this, an infrastructure which takes
freely-available software and makes it available to others
is desirable. This infrastructure must, at a miniumum:

1. Retrieve the software from its home site or a mirror
(assuming you are connected in some way to the In-
ternet), or from a CD or other medium.

2. Verify its integrity.

3. Apply any patches.

4. Configure the software for the host operating system,
then build and install.

5. Track all installed files to permit easy removal of
software using the packaging utilities.

6. Optionally create a binary package that can be in-
stalled on other hosts.

Any prerequisite software will also be automatically
downloaded, built, and installed.

There are numerous advantages to having an infrastruc-
ture which does this automatically:

1. The packages have already been setup to compile
and install correctly on your system, so you don’t
have to worry about porting the software yourself.

2. The latest versions of a program, and its patches are
obtained for you, and sorted out so that the software
works with NetBSD.

3. It is easy to use, and quick, even over a dialup con-
nection.

4. You can submit additional software to the packaging
system, so that others can benefit from your porting
work.

5. You can create scripts easily to install sets of pack-
ages and maintain the standard software for hosts on
your network.

1



6. The same ease of use and maintenance applies to
both binary and source based packages.

7. All packages are installed in a consistent directory
tree, including binaries, libraries, man pages, and
other documentation.

8. Optional configuration parameters are controlled by
a single central config file, including install prefix,
acceptable software licenses, and domestic(US) or
international encryption requirements.

9. The packages are sorted into categories, providing
useful lists of tools to browse through, all guaranteed
to work.

10. Pkgsrc knows about primary distribution and mirror
sites for source packages, so you can install even
when that URL you memorize doesn’t work.

This infrastructure helps out people new to the BSD plat-
form by giving them pre-ported software, and helps out
the "old lags" too by lifting the burden of having to dupli-
cate the work that others may have done before them.

This, however, is nothing new. The FreeBSD ports col-
lection has been doing this since 1993.

1.1 What is pkgsrc?

In 1997, NetBSD decided to introduce a third-
party software infrastructure, and base it on the the
FreeBSD ports collectionhttp://www.freebsd.
org/ports/index.html . The pkg_install tools
were imported into the NetBSD CVS repository in June
1997, followed by the basic bsd.port.mk file to the share/
hierarchy, and then the basic pkgsrc infrastructure in early
October 1997. For more information on the NetBSD
Packages collection, see the relevant documentation on
the NetBSD web site a short-cut to the relevant page on
the NetBSD web site.http://www.pkgsrc.org/

The figures for the growth of pkgsrc are given by
Hubert Feyrer in The Growth of the Packages Collection
http://www.netbsd.org/Documentation/
software/pkg-growth.html . There were 3214
packages in the packages collection at the end of Septem-
ber 2002. This compares to over 7000 for FreeBSD, and
around 2000 for OpenBSD (although OpenBSD have

a “flavors” enhancement to their ports system which
reduces the overall number of packages).

One of the problems of bringing over ports from the
FreeBSD ports collection has been that NetBSD is primar-
ily a multi-architecture operating system. To the NetBSD
people, a “port” means NetBSD running on a different
architecture. (17 different processor families, 23 differ-
ent architectures, 50+ platforms). Hence the name had
to change, and the SI unit for NetBSD’s third party soft-
ware collection came to be known as a “package”. A
place in the CVS repository to house the infrastructure for
the packages had to be found, and so that place came to
be known as pkgsrc, modelled after the existing basesrc,
xsrc, othersrc directories. “pkgsrc” was born.

1.2 How does it differ from the ports collec-
tion?

The NetBSD packages team made a number of signifi-
cant changes. A full list of these changes can be gleaned
from the web interface to the NetBSD CVS repository.
the web interface to the NetBSD CVS repositoryhttp:
//cvsweb.netbsd.org/bsdweb.cgi/ .

1. bsd.port.mk and the mtree files were moved to be in
the pkgsrc hierarchy, and use relative paths to refer to
files within pkgsrc. This allows us to have a number
of pkgsrc trees checked out and in use at the same
time.

2. Real CONFLICT handling was added to packages.

3. Wildcard and relative matching of package version
numbers was added

4. "just-in-time su(1)" functionality was added, so that
people can do everything except package installation
as unprivileged users

5. pkgsrc was ported to Solaris, and then to Linux and
Darwin, so that people can use pkgsrc on those plat-
forms. This used to be done by means of a com-
patibility layer called Zoularis, but is now done na-
tively, using the othersrc/bootstrap-pkgsrc generic
bootstrap kit. Debugging output was improved at
the same time. We have a truly generic bsd.pkg.mk,
whereby different Operating Systems use abstract

2



values defined in a defs.${OPSYS}.mk, and these
abstractions are then used within bsd.pkg.mk. This
makes it much easier to port pkgsrc to other operat-
ing systems.

6. The specification of default values was made the
same across all packages, with a single file which
is automatically included in the make(1) process -
bsd.pkg.defaults.mk - and differences from the de-
faults can be placed in /etc/mk.conf. One single
file was made which can be included by package
Makefiles in order to pick up standard defaults,
and also any differences from the norm as speci-
fied in /etc/mk.conf - package Makefiles simply .in-
clude "../../mk/bsd.prefs.mk" before any make(1) .if
... conditionals.

7. “buildlink” functionality was introduced, which en-
sures that the correct files are used in the build and
linking processes.

8. Manual pages are not specified in a package Makefile
- if a package has files, they are all included in the
package’s PLIST.

9. Simple coarse-grained locking was added to pkgsrc
using shlock(1). If a package is being built, subse-
quent attempts to build the same package will lock,
waiting for the first package to finish building.

10. The package tools were given the ability to use
digitally-signed packages - if a package has been
signed, the user can be prompted whether or not to
install a package, depending on whether or not the
creator of the binary package is trusted.

11. Message digests of all relevant patch files were gen-
erated, so that people using sup or extracting patch
files over an existing set of patch files will only get
the necessary patches applied. (If the digest doesn’t
match, the patch file is not applied). Support was
added for message digests other than md5 for dist-
files and patches, by using the digest package, and
support for SHA256 and SHA512 was added to the
digest package

12. The ACCEPTABLE_LICENCE feature was added
to /etc/mk.conf, to ensure that people only installed
packages with whose licence they agreed.

13. Automatic calculation of the effective date of the
pkg_install tools is carried out. If the tools are
too old, the user will be told this, and how to
fix it (typically, by installing the pkg_install pack-
age). Full-pathname symbolic links are adjusted in
pkg_create(1) to be relative to ${PREFIX}, if appro-
priate. This helps with binary packages.

14. An xpkgwedge package was added, which makes
packages which would normally be installed in
${X11BASE} be installed in ${LOCALBASE}.
pkg_info(1) will find out the installed prefix of
a package dynamically, rather than guessing at
${X11BASE} or ${LOCALBASE}

15. The MASTER_SITE_SORT definition was added
whereby we can sort the MASTER_SITES so
that the nearest toplogically get tried first, and
FAILOVER_FETCH was added so that, when re-
trieving distfiles, the distfile digests can be checked,
and, if they don’t match, the distfile will be consid-
ered incorrect, and the next site will be tried.

16. The object format for shared libraries is determined
dynamically at package install time rather than us-
ing a hard-coded table - this is much more dynamic,
and allows NetBSD ports to migrate from a.out to
ELF with no appreciable changes to the pkgsrc in-
frastructure. All binaries and shared libs are checked
after installation to make sure that any shared libs
are found correctly by said binaries and other shared
libraries.

17. The audit-package package was added, which uses
the relational matching of package names to scan
a published list of known vulnerabilities, which is
maintained by the NetBSD Security Officer, and
published on ftp.netbsd.org as the vulnerabilities
file ftp://ftp.netbsd.org/pub/NetBSD/
packages/distfiles/vulnerabilities ,
along with a small script to download it. This
allows users to be notified automatically if there is a
vulnerability in one of their installed packages, and
does away with the need for security advisories for
packages.

18. “system packages” have been added to the base sys-
tem, whereby all system utilities and kernels can be

3



treated as packages, and deleted, added, matched,
updated at will.

19. The BUILD_DEPENDS semantics were changed to
match the existing DEPENDS syntax - the first com-
ponent is now a pkg_info(1) recognisable package
name (with possible relational or alternate matching)

20. Special handling for the installation of rc.d scripts,
create users, and install example files has been added

21. A new framework for handling info files generation
and installation was added

22. A “replace” target was introduced, which updates a
package in place, modifying any packages which use
it. There’s also an “undo-replace” target

23. A finer-grained INTERACTIVE_STAGE definition
was introduced, so that builds can continue better
unattended

and many, many more enhancements, improvements and
speedups.

OpenBSD have also made a number of separate im-
provements (they have made many more, these are simply
some of the main ones)

1. They were the first to speed up the building process
by eliminating the use of .USE macros.

2. They have implemented their “FAKE” functional-
ity to provide staged installations (similar to Debian
packages).

3. They implemented “flavors” functionality, whereby
a package can be built in a number of ways, for ex-
ample with or without X11 functionality.

FreeBSD have continued to grow their ports collection,
and still have the most packages - near 7000 at the last
count.

2 The current situation

The conventional *BSD ways of installing software
(NetBSD’s pkgsrc, FreeBSD/OpenBSD ports system) in-
stall directly into ${LOCALBASE}, possibly overwriting
existing files. This has certain disadvantages:

1. There can only be one version of a piece of software
installed at any one time. There are numerous oc-
casions when it is desirable to have a newer copy of
software to be evaluated, whilst still using the pro-
duction copy of this. One approach is to install the
package to be evaluated by using a different prefix,
but there are numerous package management prob-
lems with this approach, and it does not scale well.

2. It is often possible that a package overwrites a work-
ing version of another unrelated package simply be-
cause they contain commands or libraries header
files with the same name. Whilst this may seem
trivial, and a simple choice has to be made as to
the more appropriate package to have installed un-
der these circumstances, it is often more compli-
cated than that. Other packages may demand certain
choices be made, which may not be convenient for
individual users.

3. Problems can arise when some third party software is
upgraded, and a lot of other software depends upon
it (libpng, jpeg, zlib). All of the packages which
use the updated package have to be re-linked, and
the only feasible way to do that is to de-install all of
them, with the ensuing problems that that can bring.
Various attempts have been made to work around
this situation (retiring packages, pkg_hack, “make
replace”), but none of these has addressed the fun-
damental problem.

It is desirable to have a means whereby two packages with
the same file system entries can co-exist. As explained
above, one method of doing this is to install the newer
package into a ${LOCALBASE} in a different location,
but this does not scale at all well, and we run into prob-
lems with the metadata files in ${PKG_DBDIR}. It is
clear that a different approach is needed.

3 Other approaches

Some other approaches to the problems outlined above
have been tried:

1. Using separate machines (where they are available)
to install newer versions of packages, test their sta-

4



bility and functionality, and then finally deploy them
across a network of machines.

2. "Retiring" packages (where shared objects are re-
tained under a differently-named package) will only
work properly when the major number of the shared
objects are changed on ELF platforms.

3. OpenBSD’s “FAKE”, a staged installation approach
similar to Debian’s, will only allow one version of a
package to be installed at any one time. In this case,
a binary package is created in the staging area, and
that binary package is added to the destination. This
has the benefit of creating a binary package which
can then be installed on other systems, and otherwise
manipulated.

4. CMU’s depot software http://andrew2.
andrew.cmu.edu/depot/ is a large piece of
software which creates a tiered environment for
third party software packages. Some consider it too
unwieldy for use in a packaging environment, and
mandates an interesting bootstrap procedure and
difficult management and configuration problems.
One of our pkgsrc developers used this for his own
packaging system before switching to pkgsrc (on
Solaris). Maintenance was the main reason he cited
for this.

5. GNU’s stow programhttp://www.gnu.ai.
mit.edu/software/stow/stow.html is a
very useful program, which uses a tiered approach to
software installation. Unfortunately, stow is written
in Perl, which again provides us with some bootstrap
problems. The program is also distributed under the
GPL, and we’d rather not go there.

6. Various other packaging effortshttp://www.
encap.org/ also use a tiered approach to the in-
stallation of software

After much consideration, it was decided that the ap-
proaches outlined above could be improved. Some ex-
periments were made with a staged installation approach,
similar to OpenBSD’s “FAKE” approach, but other prob-
lems with this method encountered. Three approaches to
installing a package into a staging area were identified:

1. The package’s build mechanism already provided a
means of installing into a staging area - packages
which have been modified for Debian’s ${DEST-
DIR}, for example, and newer X11-based packages
which also installed into ${DESTDIR}. This ap-
proach was known as the “DESTDIR” approach.

2. A number of wrapper scripts were written, to en-
able install(1), ln(1), cp(1) and other programs which
are used to install packages into ${LOCALBASE}
to take the same arguments as at present, but mod-
ify these arguments internally to point to the staging
area. This approach was found to be applicable in
most circumstances, although we also encountered
problems with packages which used GNU libtool,
perl and other utilities to install their files, and a sur-
prising number of wrapper scripts had to be written.

3. by setting ${LOCALBASE} to include a specific
${DESTDIR} component, and passing that down to
sub-make invocations within the package build and
installation procedures.

However, these experiments showed that this approach
was simply were papering over the cracks - the base prob-
lem (that you can have only one version of a package in-
stalled at any one time) still existed, and had not been
worked around in any way by this.

4 The aims of package views

Having studied the problem, it was obvious that a bet-
ter method of installing packages into a destination was
necessary. The main aim was that multiple versions of a
package should be capable of being installed at any one
time. There were also subsidiary aims, too:

1. to allow any number of different versions of pack-
ages to co-exist at any one time

2. to allow the testing of different versions of packages
on a single machine at any one time

3. to allow more dynamic conflict detection at install
time

4. whilst continuing to use the existing pkg_install
tools.

5



4.1 Dynamic Packing Lists

It was subsequently realised that if a package was in-
stalled in its own hierarchy, then dynamic PLISTs could
also be supported. From its inception, pkgsrc has used a
static list of files which constitute the package. This list
of files is called a “PLIST”, which is short for “Packing
LIST”. Over the years, the PLISTs have taken up more
and more time in package maintenance, requiring manip-
ulation for:

• gzipped or standard manual pages

• shared object and library differences by platform and
by object format (ELF or a.out)

• changes to reflect other packages installed on a ma-
chine (which may not be desired or necessary)

• the machine architecture

• the version of the operating system software

• the version number of the package itself

If PLISTs could be created at installation time, a lot of this
extra maintenance would disappear. Dynamic PLISTs re-
quire no manual maintenance, and remove a barrier from
anyone wishing to create a pkgsrc entry for a new pack-
age. Dynamic PLISTs also mean that the manipulations
described above do not have to be performed. There are
other packaging systems in existence which use dynamic
packing lists (Amdahl’s PSF, included in UTS 4.3.3, for
example) from which many lessons can be drawn.

5 Package Views

From the basic tenet that multiple versions of a single
package need to be installed, it was obvious that a sin-
gle ${LOCALBASE} directory was insufficient - multi-
ple ${LOCALBASE}s were necessary. It then became
obvious that some form of layering would be needed to
accomplish this aim. We also observed the way that multi-
ple versions of packages were installed on machines man-
ually by seasoned administrators.

• The basic idea of package views is that a tiered ap-
proach, which was later found to be similar to the
encap packaging system.

• The basic package is installed into ${LOCAL-
BASE}/packages/${PKGNAME}. This is called the
depot directory.

• A custom built shell script is used to build the upper
tiers of symbolic links in separate "views", pointing
to the files and directories in the depot directory.

Using these ideas, we build up small hierarchies per pack-
age. Symbolic links are made to each of the files and sym-
bolic links which constitute a package, and those sym-
bolic links are referenced, rather than the original file
within the small hierarchy of the package. For example,
with a number of packages installed, the contents of the
${LOCALBASE}/packages directory is shown in Figure
1.

Within each of these “depot” directories, the hierarchy
is shown in Figure 2.

As can be seen, the package’s metadata files are kept
in the depot directory - this is so that the pkg_install util-
ities work when used with a ${PKG_DBDIR} value of
${LOCALBASE}/packages (so that relational matching
of package names and version numbers continue to work).
Once the files have been installed in the depot directory,
we then create a “view” of that package’s entries under
${LOCALBASE}. This is called the default view.

We make a “linkfarm” of symbolic links to the en-
tries under ${LOCALBASE}/packages/${PKGNAME}
for each of the files and symbolic links in the package.
If there is a package-specific directory in the depot direc-
tory, it will be created as a directory in ${LOCALBASE},
provided it does not yet exist. If there is already an entry
under ${LOCALBASE} with the same name, that sym-
bolic link is replaced by the new symbolic link. This is
not such a drastic move as it is at the present time - since
the entry under ${LOCALBASE} is merely a symbolic
link, the entry in the other depot directory is not touched
in any way.

The linkfarm is created by an extra Bourne shell script,
and was written to do the same work as the GNU stow
program, except for the folding of directories. The link-
farm script takes the same (long and short) arguments as
stow, and performs the same job.

When the linkfarm has been created, a +VIEWS meta-
data file is added to the depot directory. This file contains
the views which have been built on top of the depot direc-
tory.

6



[15:54:02] agc@sys1 /usr/vpkg/packages 13 > ls -al
total 150
drwxr-xr-x 147 root wheel 4096 May 13 16:09 .
drwxr-xr-x 19 root wheel 512 May 7 20:23 ..
drwxr-xr-x 10 root wheel 512 May 7 15:52 9wm-1.1
drwxr-xr-x 10 root wheel 512 May 7 22:12 GConf-1.0.9
drwxr-xr-x 10 root wheel 512 May 7 17:34 Mesa-3.4.2nb1
drwxr-xr-x 13 root wheel 512 May 7 22:12 ORBit-0.5.15
drwxr-xr-x 10 root wheel 512 Apr 25 09:55 Xaw3d-1.5
drwxr-xr-x 13 root wheel 512 May 13 11:37 a2ps-4.13.0.2
drwxr-xr-x 13 root wheel 512 May 7 16:36 abiword-personal-0.99.5
drwxr-xr-x 13 root wheel 512 Apr 26 19:23 autoconf-2.13
drwxr-xr-x 13 root wheel 512 Apr 26 19:23 automake-1.4.5nb1
drwxr-xr-x 13 root wheel 512 Apr 25 11:15 bison-1.35
drwxr-xr-x 10 root wheel 512 May 7 22:12 bonobo-1.0.18nb1
drwxr-xr-x 10 root wheel 512 May 7 17:34 control-center-1.4.0.4
drwxr-xr-x 13 root wheel 512 May 8 21:40 curl-7.9.6
... etc ...

Figure 1: the contents of the ${LOCALBASE}/packages directory

There is one default view, and all packages have a view
in the default view.

Any number of other views can also be created. For
example, a “devel” view could be created specifically for
packages which have to be tested and evaluated before
being put into production use. In a similar way, “kde2”,
“kde3” and “gnome2” views could be created in order to
appraise those specific groups of packages. We are occa-
sionally asked about putting all GNU utilities under a sep-
arate ${PREFIX} in pkgsrc - with package views, these
packages can quite simply be pulled up into a “gnu” view.

It should be noted that all packages, even the X11-
based ones, need to install into the same ${LOCAL-
BASE} directory. This means that xpkgwedge is oblig-
atory (xpkgwedge puts a package which would normally
be destined to be installed under ${X11BASE} into the
normal ${LOCALBASE} hierarchy). This has other ben-
efits too, since xpkgwedge preserves the sanctity of what
some consider to be system libraries, and reduces the im-
pact upon the installed package hierarchy when a new ver-
sion of X11 is installed on the computer, although some
re-linking may be necessary.

A package may not be deleted from the depot directory
if there are any views of that package in existence. This

is to preserve the cleanliness of the views model, to keep
a principle of cleaning up after ourselves, and to preserve
the sanity of system administrators everywhere. The stan-
dard pkg_delete(1) command can be used to delete a view,
as can the linkfarm script. pkg_delete(1), and linkfarm(1),
can also be used to delete a view itself. pkg_info(1) can be
used to view packages in the depot directory or in views.

When the next version of the package comes along, be-
cause it has a different package name, it gets installed into
a different depot directory. The two different versions ex-
ist side by side. If the old view in ${LOCALBASE} still
exists, the linkfarm script can be used to delete the old
view, before making the new view for the new package
version. This ensures that packages linking to the package
will pick up the entries in the new version of the package.

At the current time, packages link with pre-requisite
packages in ${LOCALBASE}. Over time, we may mi-
grate this to link directly to files in the depot directories,
so that packages are built with one canonical version, but
doing this has other ramifications, such as the ability to
have wildcard dependencies on other packages.

7



[16:01:00] agc@sys1 ...vpkg/packages/pth-1.4.1 > ls -al
total 22
-rw-r--r-- 1 root wheel 693 May 7 15:52 +BUILD_INFO
-rw-r--r-- 1 root wheel 374 May 7 15:52 +BUILD_VERSION
-rw-r--r-- 1 root wheel 32 May 7 15:52 +COMMENT
-rw-r--r-- 1 root wheel 224 May 7 15:52 +CONTENTS
-rw-r--r-- 1 root wheel 1063 May 7 15:52 +DESC
-rw-r--r-- 1 root wheel 6 May 7 15:52 +SIZE_ALL
-rw-r--r-- 1 root wheel 6 May 7 15:52 +SIZE_PKG
-rw-r--r-- 1 root wheel 17 May 7 15:52 +VIEWS
drwxr-xr-x 10 root wheel 512 May 7 15:52 .
drwxr-xr-x 147 root wheel 4096 May 13 16:09 ..
drwxr-xr-x 2 root wheel 512 May 7 15:52 bin
drwxr-xr-x 3 root wheel 512 May 7 15:52 etc
drwxr-xr-x 3 root wheel 512 May 7 15:52 include
drwxr-xr-x 2 root wheel 512 May 7 15:52 info
drwxr-xr-x 4 root wheel 512 May 7 15:52 lib
drwxr-xr-x 2 root wheel 512 May 7 15:52 libexec
drwxr-xr-x 25 root wheel 512 May 7 15:52 man
drwxr-xr-x 7 root wheel 512 May 7 15:52 share
[16:01:02] agc@sys1 ...vpkg/packages/pth-1.4.1 >

Figure 2: the contents of a “depot” directory

6 Practical Aspects of Package
Views

6.1 Views

A package’s files are always in one canonical location, the
depot directory. On top of that, views can be constructed.

• There is a default view, which defaults to ${LOCAL-
BASE}.

• Any number of views can be added.

• The traditional NetBSD pkg_install(1) tools are
used, with the addition of the script to manage the
symbolic link farms.

6.2 ${LOCALBASE} vs. ${X11BASE}

Traditionally, packages have installed into ${LOCAL-
BASE}, or ${X11BASE}, depending upon a number of
issues.

NetBSD’s pkgsrc has a utility called xpkgwedge which
forces all packages which would normally install into
${X11BASE} into ${LOCALBASE}, thereby keeping
the X11 tree "clean".

6.3 ${PREFIX}

With xpkgwedge installed on a computer, all packages
now install into ${LOCALBASE}. The floating ${PRE-
FIX} definition is now unnecessary. However, ${PRE-
FIX} is used in most of the packages’ own Makefiles to
represent the installation prefix.

We thus “move” the ${PREFIX} defini-
tion to refer to the depot directory, ${LOCAL-
BASE}/packages/${PKGNAME}. This gives us a
simple and easy way to refer to the depot directory from
package Makefiles.

6.4 bsd.pkg.mk internals

At the present time, packages which use
GNU configure scripts are passed the item –

8



prefix=${GNU_CONFIGURE_PREFIX} where
${GNU_CONFIGURE_PREFIX} defaults to
${PREFIX}. With package views, as mentioned
above, PREFIX is modified to point to ${LOCAL-
BASE}/packages/${PKGNAME}, and so no further
internal manipulation of prefices needs to take place.

6.5 Upgrading packages

Previously, an upgrade or update to a package, especially
one containing shared libraries and objects, could be an
onerous task, especially (on ELF systems) if a shared li-
brary major number change was involved. With packages
views, the new package is installed alongside the old one.
There are now two possible circumstances (it is assumed
that ELF platforms are being used, since almost all sys-
tems now use the ELF format):

6.5.1 The majority of cases

In the overwhelming majority of cases, the newer version
of the package is installed in its own depot directory, the
linkfarm in the default view to the older version is deleted,
and a new linkfarm to the newer version is created in the
default view. No further changes are necessary, and it is
possible to try out other packages which use this package,
even if shared libraries are involved. Note that, should the
newer version of the package not function as intended, it
is a simple matter to revert to the older version, by delet-
ing the linkfarm in the default view to the newer version,
and adding a linkfarm to the default view for the older ver-
sion. As we optimise for the most common occurrence in
all things, this approach brings huge benefits.

6.5.2 A shared library major number change

Using the existing “overwrite” meachanism, for a few
specific and annoying cases, a major number change for
a shared library has meant that those packages, and any
other packages which re-use them, have to be re-linked.
There have been two memorable occasions over the last
year (libpng and libiconv) when this has necessitated a
large amount of “make update” work. With package
views, this situation does not cause any problems, since
the old shared library is still around in its depot direc-
tory, and the symbolic link to it still exists from the de-

fault view; similarily, the new shared library exists in its
depot directory, and a symbolic link to its major version
exists in the default view, too:

libwibble.so -> /usr/pkg/packages/wibble-
2.0/lib/libwibble.so.2.0

libwibble.so.1 -> /usr/pkg/packages/wibble-
1.0/lib/libwibble.so.1.0

libwibble.so.2 -> /usr/pkg/packages/wibble-
2.0/lib/libwibble.so.2.0

Whilst the symbolic link to the non-versioned shared
library in the default view (libwibble.so) is overwritten, it
makes no difference, since that symbolic link is only used
for compilation.

7 A Worked Example

7.1 An illustration - the depot directory

The files which constitute the package’s entries in the file
system are shown in Figure 3.

7.2 An illustration - the default view

The files which constitute the package in the default view
are shown in Figure 4.

7.3 The Linkfarms

The symbolic links in the default view, and their targets
under the depot directory, are shown in Figure 5.

8 Advantages

With package views, the immediate benefits are the same
as the aims:

1. to allow any number of different versions of pack-
ages to co-exist at any one time

2. to allow the testing of different versions of packages
on a single machine at any one time

3. to allow more dynamic conflict detection at install
time

9



[16:42:15] agc@sys1 /usr/vpkg/packages 339 > env PKG_DBDIR=/usr/vpkg/packages
pkg_info -L pth
Information for pth-1.4.1:
Files:
/usr/vpkg/packages/pth-1.4.1/bin/pth-config
/usr/vpkg/packages/pth-1.4.1/bin/pthread-config
/usr/vpkg/packages/pth-1.4.1/include/pth.h
/usr/vpkg/packages/pth-1.4.1/include/pthread.h
/usr/vpkg/packages/pth-1.4.1/lib/libpth.a
/usr/vpkg/packages/pth-1.4.1/lib/libpth.la
/usr/vpkg/packages/pth-1.4.1/lib/libpth.so
/usr/vpkg/packages/pth-1.4.1/lib/libpth.so.14
/usr/vpkg/packages/pth-1.4.1/lib/libpth.so.14.21
/usr/vpkg/packages/pth-1.4.1/lib/libpthread.a
/usr/vpkg/packages/pth-1.4.1/lib/libpthread.la
/usr/vpkg/packages/pth-1.4.1/lib/libpthread.so
/usr/vpkg/packages/pth-1.4.1/lib/libpthread.so.14
/usr/vpkg/packages/pth-1.4.1/lib/libpthread.so.14.21
/usr/vpkg/packages/pth-1.4.1/man/man1/pth-config.1
/usr/vpkg/packages/pth-1.4.1/man/man1/pthread-config.1
/usr/vpkg/packages/pth-1.4.1/man/man3/pth.3
/usr/vpkg/packages/pth-1.4.1/man/man3/pthread.3
/usr/vpkg/packages/pth-1.4.1/share/aclocal/pth.m4
/usr/vpkg/packages/pth-1.4.1/share/doc/pth/ANNOUNCE
/usr/vpkg/packages/pth-1.4.1/share/doc/pth/AUTHORS
/usr/vpkg/packages/pth-1.4.1/share/doc/pth/COPYING
/usr/vpkg/packages/pth-1.4.1/share/doc/pth/HACKING
/usr/vpkg/packages/pth-1.4.1/share/doc/pth/NEWS
/usr/vpkg/packages/pth-1.4.1/share/doc/pth/README
/usr/vpkg/packages/pth-1.4.1/share/doc/pth/SUPPORT
/usr/vpkg/packages/pth-1.4.1/share/doc/pth/TESTS
/usr/vpkg/packages/pth-1.4.1/share/doc/pth/THANKS
/usr/vpkg/packages/pth-1.4.1/share/doc/pth/USERS
/usr/vpkg/packages/pth-1.4.1/share/doc/pth/pthread.ps
/usr/vpkg/packages/pth-1.4.1/share/doc/pth/rse-pmt.ps
[16:42:27] agc@sys1 /usr/vpkg/packages 340 >

Figure 3: the contents of the package in the “depot” directory

10



[16:42:27] agc@sys1 /usr/vpkg/packages 340 > pkg_info -L pth
Information for pth-1.4.1:
Files:
/usr/vpkg//bin/pth-config
/usr/vpkg//bin/pthread-config
/usr/vpkg//include/pth.h
/usr/vpkg//include/pthread.h
/usr/vpkg//lib/libpth.a
/usr/vpkg//lib/libpth.la
/usr/vpkg//lib/libpth.so
/usr/vpkg//lib/libpth.so.14
/usr/vpkg//lib/libpth.so.14.21
/usr/vpkg//lib/libpthread.a
/usr/vpkg//lib/libpthread.la
/usr/vpkg//lib/libpthread.so
/usr/vpkg//lib/libpthread.so.14
/usr/vpkg//lib/libpthread.so.14.21
/usr/vpkg//man/man1/pth-config.1
/usr/vpkg//man/man1/pthread-config.1
/usr/vpkg//man/man3/pth.3
/usr/vpkg//man/man3/pthread.3
/usr/vpkg//share/aclocal/pth.m4
/usr/vpkg//share/doc/pth/ANNOUNCE
/usr/vpkg//share/doc/pth/AUTHORS
/usr/vpkg//share/doc/pth/COPYING
/usr/vpkg//share/doc/pth/HACKING
/usr/vpkg//share/doc/pth/NEWS
/usr/vpkg//share/doc/pth/README
/usr/vpkg//share/doc/pth/SUPPORT
/usr/vpkg//share/doc/pth/TESTS
/usr/vpkg//share/doc/pth/THANKS
/usr/vpkg//share/doc/pth/USERS
/usr/vpkg//share/doc/pth/pthread.ps
/usr/vpkg//share/doc/pth/rse-pmt.ps
[16:42:41] agc@sys1 /usr/vpkg/packages 340 >

Figure 4: the contents of the package in the default view

11



[16:42:41] agc@sys1 /usr/vpkg/packages 341 > ls -al ‘pkg_info -qL pth‘
lrwxr-xr-x 1 root wheel 43 Apr 24 09:28 /usr/vpkg//bin/pth-config -> /usr/vpkg/packages/pth-1.4.1/bin/pth-
config
lrwxr-xr-x 1 root wheel 47 Apr 24 09:28 /usr/vpkg//bin/pthread-config -> /usr/vpkg/packages/pth-
1.4.1/bin/pthread-config
lrwxr-xr-x 1 root wheel 42 Apr 24 09:28 /usr/vpkg//include/pth.h -> /usr/vpkg/packages/pth-1.4.1/include/pth.h
lrwxr-xr-x 1 root wheel 46 Apr 24 09:28 /usr/vpkg//include/pthread.h -> /usr/vpkg/packages/pth-
1.4.1/include/pthread.h
lrwxr-xr-x 1 root wheel 41 Apr 24 09:28 /usr/vpkg//lib/libpth.a -> /usr/vpkg/packages/pth-1.4.1/lib/libpth.a
lrwxr-xr-x 1 root wheel 42 Apr 24 09:28 /usr/vpkg//lib/libpth.la -> /usr/vpkg/packages/pth-1.4.1/lib/libpth.la
lrwxr-xr-x 1 root wheel 42 Apr 24 09:28 /usr/vpkg//lib/libpth.so -> /usr/vpkg/packages/pth-1.4.1/lib/libpth.so
lrwxr-xr-x 1 root wheel 45 Apr 24 09:28 /usr/vpkg//lib/libpth.so.14 -> /usr/vpkg/packages/pth-
1.4.1/lib/libpth.so.14
lrwxr-xr-x 1 root wheel 48 Apr 24 09:28 /usr/vpkg//lib/libpth.so.14.21 -> /usr/vpkg/packages/pth-
1.4.1/lib/libpth.so.14.21
lrwxr-xr-x 1 root wheel 45 Apr 24 09:28 /usr/vpkg//lib/libpthread.a -> /usr/vpkg/packages/pth-
1.4.1/lib/libpthread.a
lrwxr-xr-x 1 root wheel 46 Apr 24 09:28 /usr/vpkg//lib/libpthread.la -> /usr/vpkg/packages/pth-
1.4.1/lib/libpthread.la
lrwxr-xr-x 1 root wheel 46 Apr 24 09:28 /usr/vpkg//lib/libpthread.so -> /usr/vpkg/packages/pth-
1.4.1/lib/libpthread.so
lrwxr-xr-x 1 root wheel 49 Apr 24 09:28 /usr/vpkg//lib/libpthread.so.14 -> /usr/vpkg/packages/pth-
1.4.1/lib/libpthread.so.14
lrwxr-xr-x 1 root wheel 52 Apr 24 09:28 /usr/vpkg//lib/libpthread.so.14.21 -> /usr/vpkg/packages/pth-
1.4.1/lib/libpthread.so.14.21
lrwxr-xr-x 1 root wheel 50 Apr 24 09:28 /usr/vpkg//man/man1/pth-config.1 -> /usr/vpkg/packages/pth-
1.4.1/man/man1/pth-config.1
lrwxr-xr-x 1 root wheel 54 Apr 24 09:28 /usr/vpkg//man/man1/pthread-config.1 -> /usr/vpkg/packages/pth-
1.4.1/man/man1/pthread-config.1
lrwxr-xr-x 1 root wheel 43 Apr 24 09:28 /usr/vpkg//man/man3/pth.3 -> /usr/vpkg/packages/pth-
1.4.1/man/man3/pth.3
lrwxr-xr-x 1 root wheel 47 Apr 24 09:28 /usr/vpkg//man/man3/pthread.3 -> /usr/vpkg/packages/pth-
1.4.1/man/man3/pthread.3
lrwxr-xr-x 1 root wheel 49 Apr 24 09:28 /usr/vpkg//share/aclocal/pth.m4 -> /usr/vpkg/packages/pth-
1.4.1/share/aclocal/pth.m4
lrwxr-xr-x 1 root wheel 51 Apr 24 09:28 /usr/vpkg//share/doc/pth/ANNOUNCE -> /usr/vpkg/packages/pth-
1.4.1/share/doc/pth/ANNOUNCE
lrwxr-xr-x 1 root wheel 50 Apr 24 09:28 /usr/vpkg//share/doc/pth/AUTHORS -> /usr/vpkg/packages/pth-
1.4.1/share/doc/pth/AUTHORS
lrwxr-xr-x 1 root wheel 50 Apr 24 09:28 /usr/vpkg//share/doc/pth/COPYING -> /usr/vpkg/packages/pth-
1.4.1/share/doc/pth/COPYING
lrwxr-xr-x 1 root wheel 50 Apr 24 09:28 /usr/vpkg//share/doc/pth/HACKING -> /usr/vpkg/packages/pth-
1.4.1/share/doc/pth/HACKING
lrwxr-xr-x 1 root wheel 47 Apr 24 09:28 /usr/vpkg//share/doc/pth/NEWS -> /usr/vpkg/packages/pth-
1.4.1/share/doc/pth/NEWS
lrwxr-xr-x 1 root wheel 49 Apr 24 09:28 /usr/vpkg//share/doc/pth/README -> /usr/vpkg/packages/pth-
1.4.1/share/doc/pth/README
lrwxr-xr-x 1 root wheel 50 Apr 24 09:28 /usr/vpkg//share/doc/pth/SUPPORT -> /usr/vpkg/packages/pth-
1.4.1/share/doc/pth/SUPPORT
lrwxr-xr-x 1 root wheel 48 Apr 24 09:28 /usr/vpkg//share/doc/pth/TESTS -> /usr/vpkg/packages/pth-
1.4.1/share/doc/pth/TESTS
lrwxr-xr-x 1 root wheel 49 Apr 24 09:28 /usr/vpkg//share/doc/pth/THANKS -> /usr/vpkg/packages/pth-
1.4.1/share/doc/pth/THANKS
lrwxr-xr-x 1 root wheel 48 Apr 24 09:28 /usr/vpkg//share/doc/pth/USERS -> /usr/vpkg/packages/pth-
1.4.1/share/doc/pth/USERS
lrwxr-xr-x 1 root wheel 53 Apr 24 09:28 /usr/vpkg//share/doc/pth/pthread.ps -> /usr/vpkg/packages/pth-
1.4.1/share/doc/pth/pthread.ps
lrwxr-xr-x 1 root wheel 53 Apr 24 09:28 /usr/vpkg//share/doc/pth/rse-pmt.ps -> /usr/vpkg/packages/pth-
1.4.1/share/doc/pth/rse-pmt.ps
[16:43:05] agc@sys1 /usr/vpkg/packages 342 >

Figure 5: the target symbolic links of the package view

12



4. whilst continuing to use the existing pkg_install
tools, and

5. to provide support for dynamic packing lists

and, quite unexpectedly, other advantages were gained:

1. it is immediately obvious to which package a file or
directory belongs

2. many additional views can be built up - package
views are scalable

3. pkg_delete(1) deletes links in the views as well as
the package itself

4. multiple conflicting packages (not just multiple ver-
sions of one package) can be installed at the same
time

5. development packages can be tested and evaluated
on the same machine on which they will eventually
run

This is portable to any system on which pkgsrc runs -
NetBSD, Solaris, Darwin, and Linux. FreeBSD, Irix,
Digital Unix and HP/UX are currently in the works, al-
though the generic bootstrap kit should work on any
POSIX-compliant system.

Users can migrate to package views simply by setting
an /etc/mk.conf variable definition. For cleanliness, it
would be better to move to a complete package views
system at one time, and so a pkgsrc flag day is on the
cards. In reality, the current “overwrite” functionality and
“pkgviews” functionality can coexist until such time as
migration to package views has taken place.

In all, the package views approach is scalable in prac-
tice (see similar papers on the infrastructure.org web site
http://www.infrastructure.org/ , and from
experience of other highly-experienced system adminis-
trators).

9 Disadvantages

Of course, there are disadvantages to this approach:

1. Some people think that the linkfarms are unruly, un-
sightly and ugly.

2. A minimal amount of extra space is used to provide
the linkfarm. The early versions of package views
had code to use “hard” links rather than symbolic
links to achieve the same effect. This was possible,
since it is highly likely that a file and its link will
reside on the same file system. Where this approach
failed was in configuration files, which may be edited
by people using popular editors which create a new
file rather than a “hard” link to a file when the editing
session is saved. In all, however, some extra space is
used to store the symbolic link information, but, in
the whole scheme of things, with falling disk costs
and increasing disk capacities, it is no more than a
fraction of a percentage of the total disk space used,
and so can be discounted for all practical purposes.

In all, with different versions of packages to be installed
side by side, more disk space in general will be needed
(this is more of a consequence than a disadvantage),
which may not always be appropriate (NetBSD still runs
on a number of systems, like the VAX and acorn26, where
directly attached disk space is at a premium). One sugges-
tion for this is to use NFS or cheaper, mass-produced IDE
discs (where possible).

10 Conclusions

The advantages of being able to have two different ver-
sions of a package installed at any one time are immense.
It is now possible to try out new versions of packages
without compromising the existing version. The move
to dynamic packing lists will simplify pkgsrc entry cre-
ation for everyone, and reduce the amount of maintenance
which has to be performed on the current packages, in-
cluding all the special cases for different operating sys-
tems and object formats. In addition, package views allow
us to detect conflicts at package install time, rather than by
specifying this as a static definition in a package Make-
file, and resolve the conflicts in a non-destructive way.
The existing package tools can continue to be used, and
the symbolic link farms, whilst ugly, give an immediate
idea of the package to which a file entry belongs. Whilst
using package views, a direct increase in the amount of
disk space which will be used is only to be expected. The
utility value of the advantages far outweigh the disadvan-

13



tages.

11 Future directions

At present, package views are implemented on a CVS
branch within the NetBSD CVS repository. We intend
to take the following steps within pkgsrc:

1. Make xpkgwedge the default for all packages, hav-
ing first made sure via a bulk build that all packages
are xpkgwedge-friendly

2. Introduce package views by merging thepkgviews
branch in the NetBSD pkgsrc CVS repository with
the trunk. At the current time the default is
not to use package views - they are only used
if the definition PKG_INSTALLATION_TYPE
is set to pkgviews. The default value for
PKG_INSTALLATION_TYPE is overwrite.

3. When that has been done, we will switch over to dy-
namic PLISTs in pkgsrc. This will be done by using
the PLIST_TYPE definition todynamic. The de-
fault value forPLIST_TYPE is static.

4. Monitor reaction to package views and dynamic
PLISTs, and to improve upon it where possible

References

[FreeBSD] http://www.freebsd.org/ports/index.html
- FreeBSD Ports

[Pkgsrc] http://www.pkgsrc.org/ - A shortcut to
the pkgsrc area on the NetBSD website.

[Feyrer] http://www.netbsd.org/Documentation/software/pkg-
growth.html - The Growth of the
packages Collection

[NetBSD] http://cvsweb.netbsd.org/bsdweb.cgi/ -
a web interface to the NetBSD CVS
Repository

[CMU] http://andrew2.andrew.cmu.edu/depot/ -
The Depot Configuration Management
Project

[GNU] http://www.gnu.ai.mit.edu/software/stow/stow.html
- GNU Stow

[Encap] http://www.encap.org/ - The Encap
Archive

[Infrastructures] http://www.infrastructures.org/ In-
frastructures.org - Best Practices in
Automated Systems Administration and
Infrastructure Architecture

[Vulnerabilities] ftp://ftp.netbsd.org/pub/NetBSD/packages/distfiles/vulnerabilities
- A List of Known Vulnerabilities in
Packages

14


