DNS and Internet Mail
Service Architecture

Joe Abley <jabley@isc.org>

2
» INTERNET JOFTWAHRE CONJORTIUM

7S

- L &
-"'-Ll,.r'--. r"'“'\-"'!/"'-.
—

g

Agenda

® General Service Architecture Design
Process

® Application to DNS
® Application to Internet Mail
® Brief tutorial overview of DNS and SMTP

® | ots of case studies and commentary from
you (please interrupt frequently)

These Slides

http://waww.1sc.org/misc/netsa2003/dns-and-mail.pdf

® You might like to take notes

® These slides will not be a good record of my
handwaving, my elaborate whiteboard
scribbling or of the useful experience you
hear from other people in the room

Service Architecture
Design

What is a Service?

A Service has...

a particular job to do

names or addresses (or both)
a set of clients

dependants and dependencies
availability requirements

a tendency to become busier

security requirements

Service Function

® |t is useful to know what your service
actually does before you think about

deploying it

® if you don’t know what it is supposed to do,
you don’t know whether it is doing its job

Service Location

® How do clients locate the service?

® DNS name?

® |P address!?

® Some other method?

® Why do we care!

|dentification of Clients

® \What are the clients who will use this
service!?

® Do | know who they are!

® Can | send them all mail to tell them stuff, if
| need to!?

® What will they do if things break?

Dependencies

® VWhat other services does this service
depend on, in order to function?

® What other services depend on this
service!

® Dependencies limit availability

Availability

® A service is available if it seems to function
correctly from the perspective of a client

® What are the hours during which we need
to ensure the service is available?

® 9am - 5pm, Monday to Friday!?
® 24 x 7 x 365!

® Do we get maintenance windows!

Growth

® |f the service is any good, the chances are its
workload will increase

® We need to be prepared to increase the
performance capability of the service as it
grows

® We need to be able to measure service
performance so we know when we need to
scale it up

Security

® We need to be prepared:

® to restrict the use of our service to the
clients we intend to service

® to deal with clients who are not behaving
nicely

® Sometimes this will impose additional

requirements on other services on which
our new service depends

DNS

6-Slide DNS Tutorial

DNS Tutorial |

® The DNS provides a mechanism for
mapping names to resources

® The DNS consists (principally) of:
® a namespace
® resource records

® nameservers

DNS Tutorial |l

The namespace is a tree of labels descended
from a common root

The namespace consists of zones and
domains

Zones are connected by delegations

Delegations are all about authority and
nameservers

DNS Tutorial Il

® There is usually a single ("master”) source
of authoritative zone data

® That zone data is distributed to other
authoritative servers ("’slaves”) using
mechanisms such as “zone transfer”

® The timers which control zone transfers are
specified in the zone data

DNS Tutorial IV

® Resource records are stored in zone data

® Resource records are retrieved by resolvers
sending queries to hameservers

® There are lots of different resource records
e SOA, NS,A AAAA, MX, SRY, ...

® Fach resource record has a TTL specified in
the zone data

DNS Tutorial V

® Applications typically talk to stub resolvers

® Stub resolvers typically talk to caching
resolvers

® Caching resolvers talk to authoritative
nameservers

DNS Tutorial VI

Root Server

—]> Recursive P

ORG Server
— Nameserver ———

Stub Resolver

ISC.ORG Server

Service Separation

® Nameservers can provide multiple functions
® authoritative nameservers
® master server, slave server
® caching resolver (dns cache)

® We are going to consider these functions as
separate services

e Why!?

Caching Resolver

Function

® Perform recursive lookups on behalf of stub
resolvers

® Cache responses so that they can be
returned to stub resolvers rapidly

Names, Addresses

Service referred to by clients using one or
more |P addresses

Addresses can be handed out to clients
using dynamic protocols (DHCP, PPP/IPCP)

They can also be hard-coded, and we should
expect this to happen

Renumbering will probably be painful

Clients

® A well-known set of clients
® “dial-up users”
e “DHCP clients”

® ‘“workstations within our network’

Dependencies

® What must work in order for the Caching
Resolver to work!?

® Network access to clients

® Network access to external nameservers,
or

® Network access to one or more caches

Dependants

® What depends on the Caching Resolver
service!

® Browsing the Web, Downloading Stuff
® Mail, Instant Messaging
® Printing, File Service, maybe

® Everything

Availability

® The Caching Resolver inherits all the
availability requirements of all dependent
services

® For an ISP (and most non-trivial enterprises)
this means the service needs to be up all the
time

® Maybe we get a maintenance window

Growth

® As the use of network services increases, so
the load on the Caching Resolver service
will increase

® For most enterprises this growth won’t
require a very rapid increase in CPU or
network

® For ISPs, the growth might be higher

Security

® The DNS is insecure in many ways
® Details available in the DNS workshop

® There isn’t really a good way to secure the
data obtained from the DNS today, but
maybe there will be some day

® Ve can restrict access to known clients

Data Gathering Over

® What are the implications for designing our
service architecture?

Huge Availability

We ideally want the Caching Resolver
service to always be available, since so many

things break when it’s not avai

Accidents will happen, but we’

able

| try to make

ourselves invulnerable to as many of them

as possible

® helpdesk phone ring bad

Address Stability

We don’t want to renumber our caching
nameservers, ever, if we can help it

Avoid topology-sensitive addresses

Avoid unstable addresses, e.g. PA addresses
allocated by ISPs

Try very hard to hand out addresses
dynamically wherever possible (DHCP, PPP/
IPCP) so that we minimise the pain if
renumbering is ever necessary

Service Addresses

® Give servers topologically-relevant
addresses for management

® Give services topologically-independent
addresses, which can be routed towards
particular servers

® Allows you to move services between
machines, and to re-plumb your network
without having to renumber services

Danger!

® |t is usual for servers to have a single |IP
address, and for routers not to require
extra configuration to reach particular
servers

® Adding complexity might cause operational
confusion

® We don’t want the measures we take to
increase our uptime to cause network

problems

Service Distribution

® We can provide service on a particular
address in more than one place

® | ocal load balancing
® ("layer-4 switches”,“content switches”)
® Anycast

® using the local network’s routing system
to distribute service load

Server Diversity

We should deploy more than one server (or
set of servers, if distributed)

located in different places
each with a unique, stable address

each maybe running different DNS software

Single-Purpose Servers

® Caching Resolvers typically require less
maintenance than other services, and don’t
place much demand on the underlying OS

® Deploy cheap
Caching Reso

® Cheap but Re

servers which run the
ver service, and nothing else

iable!

Growth

® Add more servers (load-balancing switch,
anycast, additional service addresses)

® |ntroduce a cache hierarchy

Measurement

® [ndividual nameservers will produce
statistics which you can gather and use to
trend performance data

® TJest infrastructure

distributed, if using anycast

Caching Resolver failures should ideally be
caught early, before too many other things
start to break

more than just ping

Summary

Reduce the possible impact of dependencies
by designing around them

Choose IP addresses wisely
Use Service Addresses
Service Distribution

Cache Hierarchy

Measure performance, so you know how
you are doing

Authoritative
Nameservers

Function

® Serve authoritative zone data to recursive
resolvers

® Publish authoritative zone data in the DNS

® Delegate authority for child zones to other
nameservers

Names, Addresses

® Service referred to by clients using one or
more |P addresses

® Addresses are obtained by clients from
other authoritative nameservers
(nameservers for the parent zone)

® Renumbering will probably be painful (why?)

Clients

® A set of clients which we can’t enumerate

® “every caching resolver in the Internet”

Dependencies

® VWhat must work in order for the
Authoritative Nameserver service to work?

® Network access to clients (i.e. to the
Internet)

® Access to authoritative zone data

Dependants

® What depends on the Authoritative
Nameserver service!

® Every other service we want to make
available which is referred to by name

® |Internet Malil

® (downtime mitigated by external caches)

Availability

Popularly-requested records will be cached
externally, so our availability requirements
are not as high as for the caching resolver
service, maybe

Things will break in strange, unidentifiable
ways if the service is down for long

Probably we can tolerate downtime for
individual servers, for maintenance

We should try for very high uptime across
the NS set

Growth

® |f we need to publish volatile data in the
DNS, then our query load will go up (since
fewer queries will be answered by caches)

® |f we publish data which relates to services
which are growing, our query load will go up

® |[f we host more zones, our query load will
go up

Security

We should be careful to provide our usual
high levels of system security on
authoritative nameservers (why?)

One day, we might have to worry about
DNSSEC

We can’t enumerate our set of clients, so
we can’t restrict access to them

We are vulnerable to nameserver or

protocol exploits (so patch early, patch
often)

Data Gathering Over

® What are the implications for designing our
service architecture?

Good Availability

® Our requirements for uptime are not as
hellish as for the Caching Resolver service

® We should aim for very high uptime, and
take steps to ensure that downtime of
individual servers are tightly controlled

® Accidents will happen, but we’ll try to make
ourselves invulnerable to as many of them
as possible

Address Stability

® We don’t particularly want to renumber our
authoritative nameservers, but we can be
fairly sure that people haven’t hard-coded
them

® Talking to registries can be tedious, and is
best avoided if possible

® Avoid topology-sensitive addresses

® Avoid unstable addresses, e.g. PA addresses
allocated by ISPs

Glue Records

® The DNS delegation tree depends on glue
records for delegations to nameservers that
are named in-zone

® Changing glue records can be difficult,
particularly if they are used for high-profile
delegations

Resolver Distance

® Delegating zones to nameservers which are
named deep within some other hierarchy
can cause delays and timeouts for resolvers

® Choosing at least some nameservers which
are named in-zone (and are hence available

via glue) is a good idea

Service Addresses

® Useful for the usual reasons:

® Give servers topologically-relevant
addresses for management

® Give services topologically-independent
addresses, which can be routed towards
particular servers

® Allows you to move services between
machines, and to re-plumb your network
without having to renumber services

Service Distribution

® We should provide service in more than
one place, using multiple NS records

® High geographic dispersion

® The intention is to make the service highly
available to the entire Internet, and we have
minimal control over the majority of the
Internet

Slave Servers

® There are commercial providers of slave
DNS service

® There are lots of free providers of slave
DNS service

® (look around you)

Other Peoples’ Slaves

® |t can be an advantage that you don’t
personally run slave servers

® if you don’t have administrative access,
you can’t break them

® |t can also be a disadvantage

® getting changes made might take time

® you are dependent on others to avoid
vulnerabilities and mistakes

No Recursion

® You do not want to use slave servers which
are also caching resolvers (why?)

® Recursion should be turned off,
completely

® You should check slave servers which are
run by other people periodically, to make
sure that recursion hasn’t been enabled

Growth

® Add more NS records: possibly painful
(why?)

® Distribute service for each nameserver

address, as we discussed with the caching
resolver

® (load-balancing switch, anycast, additional
service addresses)

® You can buy this

Measurement

® [ndividual nameservers will produce
statistics which you can gather and use to
trend performance data

® Test infrastructure
® distributed, if using anycast

® Authoritative nameserver failures should
be caught early, before data expires from
caches and slaves

® more than just ping

Summary

Reduce the possible impact of dependencies
by designing around them

Choose IP addresses wisely
Use Service Addresses
Service Distribution

Measure performance, so you know how
you are doing

Internet Mail

Six-Slide Mail Tutorial

Tutorial |

® Mail User Agent (MUA)
® what a user uses
® sends mail using SMTP

® receives mail using IMAP or POP, or a file
system

Tutorial |l

® Mail Transfer Agent (MTA)
® general term
® receives mail using SMTP
® sends mail to other hosts using SMTP

® passes mail to a Mail Delivery Agent

Tutorial Il

® Mail Delivery Agent (MDA)
® accepts mail from an MTA

® delivers it into some suitable database,

ready for retrieval by other servers (IMAP,
POP, web mail)

Tutorial IV

® SMTP is the Simple Mail Transfer Protocol
® simple, line-based textual protocol

e HELO, MAIL FROM, RCPT TO, DATA
® Message Headers, Message Bodies

® Envelope Addresses

Tutorial V

® Appropriate servers for delivering mail are
identified using the DNS, in general

® MX records, A records

® MUAs usually use external MTAs to do this
work for them, because they are stupid
(smart host”)

® somewhat like stub resolver/caching
resolver

Tutorial VI

® Spam makes people angry

Service Separation

® SMTP Servers can provide multiple
functions, and in this tutorial we will
separate them into four classes:

® Relay Agent ("Smart Host”)
® Mail Router (for outbound mail)

® Mail Exchanger (for inbound mail)

® Mail Store

® with some appropriate delivery agent

Relay Agent

Function

® Accept mail from MUAs using SMTP

® possibly using authentication (why?) or
TLS (why?) or both (why?)

® Send that mail to a Mail Router
® Mess with users’ messages

® strip known-bad Outbreak Express
viruses, raise red flags on spam

® add irritating corporate messages

Names, Addresses

® Service referred to by clients using a DNS
name

® The DNS name for the Relay Agent will
typically be hard-coded, and it will be
annoying for users to have to change it

® Renaming will probably be painful

® we will need to support the old name for
ever

Clients

® A well-known set of clients
® “dial-up users”
® “DHCP clients”
® “‘workstations within our network’”

® ‘“clients on the Internet who authenticate
in some appropriate fashion”

Dependencies

® What must work in order for the Relay
Agent to work!?

® Network access to clients

® (access to some authentication service)
® Network access to Mail Routers

® Access to the DNS (Caching Resolvers)

® As |long as clients and send mail, there is no
immediate fault to complain about (maybe
eliminate the DNS dependency for that)

Dependants

® What depends on the Mail Relay service!?

® Users being able to submit mail for
sending

® That’s about it (good)

Availability

The list of dependants is nice and small, so
the availability of the Mail Relay service can
be managed simply

We can probably get a maintenance window

Growth

As people send more mail, we will need to
scale up our server

As people send more ridiculous
attachments, we will need to buy more disk

For most enterprises this growth won’t

require a very rapid increase in CPU or
network

For ISPs, the growth might be higher

Security

We need to make sure we are careful who
we relay for

We need to make sure we are careful who
we relay for

We need to make sure we are careful who
we relay for

Maybe we’ll use some port other than 25
(why?)

Data Gathering Over

® What are the implications for designing our
service architecture?

Good Availability

® We need to be fairly sure we are up when
we are supposed to be up

® Downtime for maintenance is acceptable, so
long as we tell people (for enterprises)

® Downtime for maintenance may not be

desirable, since people are stupid and don’t
listen (for ISPs)

Name Stability

® Clients are going to hard-code the name of
our Mail Relay in their MUAs

® There are lots of MUAs, and we really don’t
want to have to support them all over the
phone

® Choose a simple name that is easy to spell,
and try not to change it

® some |SPs omit the domain part by
default, and only give it to customers if the
customers’ operating system can’t learn it

Service Addresses

® Not so dramatically useful for the Mail Relay
service, since people use names rather than
addresses, but still somewhat good

® We can change addresses in the DNS

® but this relies on DNS stub resolvers and
downstream caching resolvers being
sensible

® there is invariably a delay involved in DNS
change propagation

Service Distribution

® We might decide to distribute Mail Relay
servers to different places, so that we're not

so dependent on the network performing
well

® SSL re-keying, TCP timeouts over high-
latency links

® We might decide to deploy clusters of Mail

Relay servers, so we don’t need planned
maintenance windows

Growth

Add more CPU
Add more disk
Add more servers

Add more (low-loss) network

Measurement

® Monitor queue lengths, free disk space,
server load

® TJest infrastructure

® Attempt to relay mail every N minutes
through the box to some collector
box(es) which can sound alarms if N*M
minutes pass without mail being received

® Measure propagation delay (to off-net
boxes, or via off-net auto-responders)

® more than just ping

Summary

Do not be an Open Relay
Choose names wisely

Use Service Addresses (maybe)
Service Distribution (maybe)

Measure performance, so you know how
you are doing

Mail Router

Function

Accept mail from Mail Relays

Relay that mail to other SMTP servers in the
Internet (or to local Mail Exchangers)

Never touch message content

Dedicated Outbound Mail Facility (why?)

Names, Addresses

® Service referred to by clients using a DNS
name

® Renaming is trivial
® Names are not important

® but don’t make them too silly, since they
will show up in Received headers

Clients

® A well-known set of clients
® “Mail Relays”

® that’s it

Dependencies

® VWhat must work in order for the Mail
Router to work!?

® Network access to clients

® Network access to our Mail Exchangers
(for local mail)

® Network access to other peoples’ Mail
Exchangers (i.e. the Internet)

® Access to the DNS (Caching Resolvers)

Dependants

® What depends on the Mail Relay service!?

® Mail Relays being able to send mail to
other places

® That’s about it (good)

Availability

The list of dependants is nice and small, so
the availability of the Mail Router service
can be managed simply

We can definitely get a maintenance window

If we’re down for long, though, we put
pressure on other servers’ mail queues, and
it might take time for our queues to clear

Mail delays will eventually make the helpdesk
phone ring (bad)

Growth

® Same as the Mail Relay

® As people send more mail, we will need to
scale up our server

® As people send more ridiculous

attachments, we will need to buy more
disk

® For most enterprises this growth won’t

require a very rapid increase in CPU or
network

® For ISPs, the growth might be higher

Security

® Ve need to make sure we are careful who
we relay for

® We should not relay for any hosts other
than Mail Relays

® |n fact, we should refuse SMTP connections
from any SMTP client which we don’t know

® firewall the box off from the Internet

Data Gathering Over

® What are the implications for designing our
service architecture?

Fair Availability

® We need to be fairly sure we are up when
we are supposed to be up

® Downtime for maintenance is acceptable, so
long as we don’t cause ourselves queue pain
by being down for too long

® We don’t really need to notify anybody for
short maintenance operations

Name Stability

® |argely irrelevant, however

® Amusing and rude hostnames will appear

in Received headers, so exercise some
restraint

® Difficult-to-spell or confusingly-similar
hostnames will cause support headaches
for your abuse department

Service Addresses

® Not spectacularly useful for the Mail Router
service

® We can change addresses in the DNS

® However, if everything else is running on
Service Addresses, maybe it’s easier not to
be different

Service

Distribution

® |n order to avoid deep queues on Mail
Relays, we probably want to deploy a Mail

Router everyw

nere we have a Mail Relay

® that way we

nave a nice place to worry

about disk and CPU upgrades that the
users don’t connect to

® We can deploy

servers in clusters

Look Legitimate

® Make sure your server doesn'’t look like a
spam exploder

® proper reverse DNS

® handle abuse reports promptly and
broperly

® Use addresses which are not in similar
ranges to those given out to customers

Growth

Add more CPU

Add more disk

Add more servers
Add more (low-loss) network

Tune TCP stacks

Use appropriate software, optimised to run
queues efficiently

Measurement

® Monitor queue lengths, free disk space,
server load

® TJest infrastructure

® Attempt to relay mail every N minutes
through the box to some collector
box(es) which can sound alarms if N*M
minutes pass without mail being received

® more than just ping

Summary

Definitely do not be an Open Relay
Use Service Addresses (maybe)

Distribution of servers in coordination with
Mail Relay servers

Appear well-set-up (reverse DNS, not on
blacklists)

Measure performance, so you know how
you are doing

Mail Exchanger

Function

® Accept mail from other servers on the
Internet using SMTP

® almost certainly without authentication or
TLS (why?)

® Mess with users’ messages

® strip known-bad Outbreak Express
viruses, raise red flags on spam

® Deliver good mail to the Mail Store

® Dedicated Inbound Mail Facility (why?)

Names, Addresses

® Service referred to by clients using a DNS
name

® Renaming will probably not be particularly
painful (small DNS change)

® we will need to support the old name a
while (RR TTL*N)

® sometimes renaming can be useful
(spammers don’t always use the DNS)

Clients

® A set of clients which cannot be
enumerated

® “‘other hosts on the Internet”
® some are nice

® some are evil (which are which?)

Dependencies

® VWhat must work in order for the Mail
Exchanger to work?

® Network access to clients (i.e. the
Internet)

® Knowledge of what constitutes a local
mailbox (cf dictionary attacks)

® Access to the Mail Store service

® Access to the DNS (Caching Resolver
Service) (why?)

Dependants

® What depends on the Mail Exchange
service!

® Users being able to receive mail that was
sent from other places

® That’s about it (good)

Availability

® The list of dependants is nice and small, so
the availability of the Mail Exchange service
can be managed simply

® We can probably do brief maintenance
without telling people, much

® [ong maintenance periods willl result in mail
queueing up in other places, and may cause
noticable delays (helpdesk phone ring bad)

Growth

® As people receive more spam, uh, mail, we
will need to scale up our server

® As people send our users more ridiculous
attachments, we will need to buy more disk

® not that much disk

® we can use other peoples’ disk for this, to
a large extent

Security

® We don’t relay for anybody
® Not anybody

® Not even ourselves

Spam

® The Mail Exchanger is the entry point for
spam into our network

® (our Mail Relays can receive spam, but only
from our own customers, and we know
where they live)

Data Gathering Over

® What are the implications for designing our
service architecture?

Good Availability

® We need to be fairly sure we are up when
we are supposed to be up

® Downtime for maintenance is acceptable,
and for short maintenance we might not
need notification

® | onger periods of downtime are
problematic, since users will notice

® (helpdesk phone, etc, etc)

Name Stability

® Name stability is not particularly important

® Choice of name is not particularly
important, except that, again,

® people will read names from Received
headers over the phone

Service Addresses

® Not spectacularly useful for the Mail
Exchanger service

® We can change addresses in the DNS

® However, again, if everything else is running
on Service Addresses, maybe it’s easier not
to be different

Service Distribution

® |f there are periods of unreachability for
Mail Exchangers, then mail will get delayed

® helpdesk phone rin, blah, blah

® The cost of queueing the mail that can’t be
delivered is shared amongst all kinds of
other people you don’t know

® maybe you don’t care so much about that
® We can deploy servers in clusters

® We can add more MX records (probably)

Outbound Mail

® Mail Exchangers need to send mail (why?)

® Send the mail via Mail Routers, rather than
queueing it yourself

® concentrate all your queue handling on
dedicated boxes

Ad
Ad

Ac
Ad

Ad

Growth

more CPU (SpamAssassin eats CPU)

more disk
more servers to clusters

more MXes (difficult?)

more (low-loss) network

Measurement

® Monitor queue lengths, free disk space,
server load

® Test infrastructure

® Attempt to relay mail every N minutes
through the box to some collector
box(es) which can sound alarms if N*M
minutes pass without mail being received

® Attempt to relay mail to other places, and
sound LOUD ALARMS when it works

® more than just ping

Spam

® This is not a Spam Tutorial

® There will be no shouting, please

Spam

® There are some hosts we can refuse
connections from, based on some criteria
which makes sense for us

® (reverse DNS, blacklists, etc)

® Other messages might require their
message bodies to be examined before we
can tell that they are spam

® (DCC, SpamAssassin, Habeas, etc)

® more expensive

Wildcard Mailboxes

® Some customers like to buy domains and
arrange for mail addressed to *@their-
domain to be delivered into one mailbox

® very, very expensive to support
® you will run out of disk very quickly

® perl processes will consume all your CPU

® you will become obsessed and constantly
enraged by spammers, and you will never
sleep again

Summary

Do not relay at all, for anybody, ever
Choose names wisely

Use Service Addresses (maybe)
Service Distribution (maybe)

Measure performance, so you know how
you are doing

No wildcard mailboxes, if possible

Mail Store

Function

® Accept mail from Mail Exchangers using
SMTP

® Deliver that mail to local mailboxes

® Make local mailboxes available to clients
(IMAP, POP, web mail, etc)

Names, Addresses

® Service referred to by clients using a DNS
name

® The name of the servers are really not

important (this is for SMTP delivery, not
IMAP/POP access)

® usual comments on stupid names and
Received headers apply

Clients

® A distinct, small set of clients who never call
the helpdesk

® Mail Exchangers

® We may well share hardware with IMAP/
POP services

® clients of those services do call the
helpdesk

Dependencies

® \VWhat must work in order for the Mail Store
to work!?

® Network access to clients (i.e. Mail
Exchangers)

® Knowledge of what constitutes a local
mailbox in order to be able to deliver mail

appropriately

Dependants

® What depends on the Mail Exchange
service!

® Users being able to receive mail that was
sent from other places

® That’s about it (good)

Availability

® The list of dependants is nice and small, so
the availability of the Mail Store service can
be managed simply

® We can probably get a maintenance window

® Customers will notice when the platforms
go down (although not so much if just the
Mail Store service goes down)

Growth

® As people receive more spam, uh, mail, we
will need to scale up our server

® As people send our users more ridiculous
attachments, we will need to buy more disk

® |ots and lots of disk

® a strategy for removing unread mail from
mailboxes after some time is probably
sensible

® strategy for refusing more mail to
mailboxes which are already too full

Security

We don’t relay for anybody
Not anybody
Not even ourselves

We don’t even accept SMTP connections
from anybody other than Mail Exchangers

if we are liberal with this, users will start
using the POP server to send mail through,
and our dependencies just blew out

Data Gathering Over

® What are the implications for designing our
service architecture?

Good Availability

® We need to be fairly sure we are up when
we are supposed to be up

® The servers that the Mail Store service runs
on will probably be customer-visible (POP,

IMAP) so they have corresponding uptime
requirements

® The Mail Store service itself can go down
for short periods without people noticing

Name Stability

® Name stability is not particularly important

® Choice of name is not particularly
important, except that, again,

® people will read names from Received
headers over the phone

Service Addresses

® Not spectacularly useful for the Mail Store
service, but much more useful for IMAP/

POP services

® We can change addresses in the DNS

® |f everything else is running on Service
Addresses, maybe it’s easier not to be
different

Service Distribution

® Distributing Mail Stores leads the slight
problem that storing mail requires disk, and
clients tend to like their mail to be stored in

one place
® Can distribute users amongst mail stores
® support headache

® Can distribute storage problem to
dedicated boxes

® network storage headache

IMAP/POP Proxy

Use a proxy service to provide a consistent
entry-point for users to retrieve mail

Proxy servers can be distributed (clusters,
anycast)

Proxy servers connect to one of many POP/
IMAP servers, depending on where the
user’s mail is kept

Can move mailboxes without users knowing

Growth

® Add more CPU (maybe)
® Add more disk (definitely)

® Maybe distribute users between Mail Store
services

® POP/IMAP Proxies

® Directory service for identifying location
of user’s mail store (and existence of user,
coincidentally, for Mail Exchanger)

Measurement

® Monitor queue lengths, free disk space,
server load

® Test infrastructure

® Attempt to relay mail every N minutes
through the box to some collector
box(es) which can sound alarms if N*M
minutes pass without mail being received

® Attempt to relay mail to other places, and
sound LOUD ALARMS when it works

® more than just ping

Spam

® |deally we don’t worry about spam on the
Mail Store at all -- it has already been dealt
with by the Mail Exchanger

® this means our IMAP/POP servers can be
nice and snappy, unencumbered by the
SpamAssassin CPU drain effect

Summary

Do not relay at all, for anybody, ever
Choose names wisely

Use Service Addresses (maybe)

Service Distribution (maybe, with proxies)

Measure performance, so you know how
you are doing

Summary of Summaries

General Approach

® Try to isolate big, complicated services into
their component bits

® not all components are visible by users
® helpdesk phone ring bad

® distribute performance management
problem

® distribute software selection problem

® you can even run Exchange, if you want

DNS

® The most important service to get right

® Every service you provide to users, pretty
much, depends on DNS

® VWhen the DNS breaks, users notice

® helpdesk phone ring bad

Internet Mail

Arguably the most important application on
the Internet

Many of the components are very forgiving
of transient network or server problems

We need to be careful about what we send
(we must punish our own spammers)

We need to be careful about what we
receive (we need to expect other people to
be too lenient with their own spammers)

What Else?

® We haven’t talked about specific packages
or products

® that’s because the architecture is more
important than the details of which
package you use

® separate functionality

® use software that makes sense

Some Names

BIND, other DNS implementations

postfix, sendmail (semi-eek!), gmail, exim,
Exchange (eek!), others

mailscanner, mimedefang, DCC,
SpamAssassin (well, ok we mentioned
SpamAssassion), lots of others

MAPS RBL and friends

The End

http://www.1sc.org/misc/netsa2003/dns-and-mail.pdf

Joe Abley <jabley@isc.org>

e
P ;I INTERNET JOFTWARE CONJORTIUM

5 ,)

