
Genius Manual

Ji ří Lebl
University of Illinois, Urbana-Champaign

jirka@5z.com

Kai Willadsen
University of Queensland, Australia

kaiw@itee.uq.edu.au



Genius Manual
by Jǐrí Lebl and Kai Willadsen

Copyright © 1997-2009 Jiří (George) Lebl
Copyright © 2004 Kai Willadsen

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License (GFDL), Version

1.1 or any later version published by the Free Software Foundation with no Invariant Sections, no Front-Cover Texts, andno Back-Cover Texts.

You can find a copy of the GFDL at this link (ghelp:fdl) or in thefile COPYING-DOCS distributed with this manual.

This manual is part of a collection of GNOME manuals distributed under the GFDL. If you want to distribute this manual separately from the

collection, you can do so by adding a copy of the license to themanual, as described in section 6 of the license.

Many of the names used by companies to distinguish their products and services are claimed as trademarks. Where those names appear in any

GNOME documentation, and the members of the GNOME Documentation Project are made aware of those trademarks, then the names are in

capital letters or initial capital letters.

DOCUMENT AND MODIFIED VERSIONS OF THE DOCUMENT ARE PROVIDEDUNDER THE TERMS OF THE GNU FREE

DOCUMENTATION LICENSE WITH THE FURTHER UNDERSTANDING THAT:

1. DOCUMENT IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTYOF ANY KIND, EITHER EXPRESSED OR IMPLIED,

INCLUDING, WITHOUT LIMITATION, WARRANTIES THAT THE DOCUMENT OR MODIFIED VERSION OF THE DOCUMENT

IS FREE OF DEFECTS MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE OR NON-INFRINGING. THE ENTIRE RISK AS TO

THE QUALITY, ACCURACY, AND PERFORMANCE OF THE DOCUMENT OR MODIFIED VERSION OF THE DOCUMENT IS

WITH YOU. SHOULD ANY DOCUMENT OR MODIFIED VERSION PROVE DEFECTIVE IN ANY RESPECT, YOU (NOT THE

INITIAL WRITER, AUTHOR OR ANY CONTRIBUTOR) ASSUME THE COST OF ANY NECESSARY SERVICING, REPAIR OR

CORRECTION. THIS DISCLAIMER OF WARRANTY CONSTITUTES AN ESSENTIAL PART OF THIS LICENSE. NO USE OF ANY

DOCUMENT OR MODIFIED VERSION OF THE DOCUMENT IS AUTHORIZED HEREUNDER EXCEPT UNDER THIS

DISCLAIMER; AND

2. UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY, WHETHERIN TORT (INCLUDING NEGLIGENCE),

CONTRACT, OR OTHERWISE, SHALL THE AUTHOR, INITIAL WRITER, ANY CONTRIBUTOR, OR ANY DISTRIBUTOR OF

THE DOCUMENT OR MODIFIED VERSION OF THE DOCUMENT, OR ANY SUPPLIER OF ANY OF SUCH PARTIES, BE LIABLE

TO ANY PERSON FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY

CHARACTER INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSSOF GOODWILL, WORK STOPPAGE, COMPUTER

FAILURE OR MALFUNCTION, OR ANY AND ALL OTHER DAMAGES OR LOSSES ARISING OUT OF OR RELATING TO USE

OF THE DOCUMENT AND MODIFIED VERSIONS OF THE DOCUMENT, EVEN IF SUCH PARTY SHALL HAVE BEEN

INFORMED OF THE POSSIBILITY OF SUCH DAMAGES.

Feedback

To report a bug or make a suggestion regarding the Genius Mathematics Tool application or this manual, follow the directions in the GNOME

Feedback Page (ghelp:gnome-feedback).



Table of Contents
1. Introduction ............................................................................................................................................1

2. Getting Started.......................................................................................................................................2

2.1. To Start Genius Mathematics Tool..............................................................................................2
2.2. When You Start Genius...............................................................................................................2

3. Basic Usage.............................................................................................................................................5

3.1. Using the Work Area...................................................................................................................5
3.2. To Create a New Program...........................................................................................................6
3.3. To Open and Run a Program.......................................................................................................6

4. Plotting....................................................................................................................................................7

4.1. Line Plots....................................................................................................................................7
4.2. Parametric Plots..........................................................................................................................8
4.3. Slopefield Plots...........................................................................................................................9
4.4. Vectorfield Plots........................................................................................................................10
4.5. Surface Plots..............................................................................................................................10

5. GEL Basics...........................................................................................................................................12

5.1. Values........................................................................................................................................12
5.1.1. Numbers.......................................................................................................................12
5.1.2. Booleans.......................................................................................................................13
5.1.3. Strings...........................................................................................................................14
5.1.4. Null...............................................................................................................................14

5.2. Using Variables.........................................................................................................................15
5.2.1. Setting Variables...........................................................................................................15
5.2.2. Built-in Variables..........................................................................................................16
5.2.3. Previous Result Variable...............................................................................................16

5.3. Using Functions........................................................................................................................16
5.3.1. Defining Functions.......................................................................................................17
5.3.2. Variable Argument Lists...............................................................................................17
5.3.3. Passing Functions to Functions....................................................................................18
5.3.4. Operations on Functions...............................................................................................18

5.4. Absolute Value / Modulus.........................................................................................................19
5.5. Separator...................................................................................................................................19
5.6. Modular Evaluation...................................................................................................................19
5.7. List of GEL Operators...............................................................................................................20

6. Programming with GEL .....................................................................................................................25

6.1. Conditionals..............................................................................................................................25
6.2. Loops.........................................................................................................................................25

6.2.1. While Loops.................................................................................................................25
6.2.2. For Loops......................................................................................................................25
6.2.3. Foreach Loops..............................................................................................................26
6.2.4. Break and Continue......................................................................................................26

6.3. Sums and Products....................................................................................................................27
6.4. Comparison Operators..............................................................................................................27
6.5. Global Variables and Scope of Variables..................................................................................27
6.6. Returning...................................................................................................................................29

iii



6.7. References.................................................................................................................................30
6.8. Lvalues......................................................................................................................................30

7. Advanced Programming with GEL ...................................................................................................32

7.1. Error Handling..........................................................................................................................32
7.2. Toplevel Syntax.........................................................................................................................32
7.3. Returning Functions..................................................................................................................33
7.4. True Local Variables.................................................................................................................34
7.5. GEL Startup Procedure.............................................................................................................35
7.6. Loading Programs.....................................................................................................................35

8. Matrices in GEL ..................................................................................................................................37

8.1. Entering Matrices......................................................................................................................37
8.2. Conjugate Transpose and Transpose Operator..........................................................................38
8.3. Linear Algebra..........................................................................................................................38

9. Polynomials in GEL.............................................................................................................................40

9.1. Using Polynomials....................................................................................................................40

10. Set Theory in GEL.............................................................................................................................41

10.1. Using Sets...............................................................................................................................41

11. List of GEL functions ........................................................................................................................42

11.1. Commands..............................................................................................................................42
11.2. Basic........................................................................................................................................43
11.3. Parameters...............................................................................................................................49
11.4. Constants.................................................................................................................................54
11.5. Numeric...................................................................................................................................55
11.6. Trigonometry...........................................................................................................................62
11.7. Number Theory.......................................................................................................................68
11.8. Matrix Manipulation...............................................................................................................79
11.9. Linear Algebra........................................................................................................................87
11.10. Combinatorics.....................................................................................................................102
11.11. Calculus...............................................................................................................................107
11.12. Functions.............................................................................................................................113
11.13. Equation Solving.................................................................................................................117
11.14. Statistics..............................................................................................................................119
11.15. Polynomials.........................................................................................................................122
11.16. Set Theory...........................................................................................................................123
11.17. Miscellaneous......................................................................................................................124
11.18. Symbolic Operations...........................................................................................................125
11.19. Plotting................................................................................................................................126

12. Example Programs in GEL.............................................................................................................131

13. Settings..............................................................................................................................................133

13.1. Output....................................................................................................................................133
13.2. Precision................................................................................................................................134
13.3. Terminal................................................................................................................................135
13.4. Memory.................................................................................................................................135

14. About Genius Mathematics Tool....................................................................................................136

iv



List of Figures
2-1. Genius Mathematics Tool Window......................................................................................................2
4-1. Create Plot Window..............................................................................................................................7
4-2. Plot Window.........................................................................................................................................7
4-3. Parametric Plot Tab..............................................................................................................................8
4-4. Parametric Plot.....................................................................................................................................9
4-5. Surface Plot........................................................................................................................................10

v



Chapter 1. Introduction

The Genius Mathematics Tool application is a general calculator for use as a desktop calculator, an
educational tool in mathematics, and is useful even for research. The language used in Genius
Mathematics Tool is designed to be ‘mathematical’ in the sense that it should be ‘what you mean is what
you get’. Of course that is not an entirely attainable goal. Genius Mathematics Tool features rationals,
arbitrary precision integers and multiple precision floatsusing the GMP library. It handles complex
numbers using cartesian notation. It has good vector and matrix manipulation and can handle basic linear
algebra. The programming language allows user defined functions, variables and modification of
parameters.

Genius Mathematics Tool comes in two versions. One version is the graphical GNOME version, which
features an IDE style interface and the ability to plot functions of one or two variables. The command
line version does not require GNOME, but of course does not implement any feature that requires the
graphical interface.

This manual describes mostly the graphical version of the calculator, but the language is of course the
same. The command line only version lacks the graphing capabilities and all other capabilities that
require the graphical user interface.

1



Chapter 2. Getting Started

2.1. To Start Genius Mathematics Tool

You can start Genius Mathematics Tool in the following ways:

Applications menu

Depending on your operating system and version, the menu item for Genius Mathematics Tool
could appear in a number of different places. It can be in theEducation, Accessories, Office,
Science, or similar submenu, depending on your particular setup. The menu item name you are
looking for isGenius Math Tool. Once you locate this menu item click on it to start Genius
Mathematics Tool.

Run dialog

Depending on your system installation the menu item may not be available. If it is not, you can open
the Run dialog and executegnome-genius.

Command line

To start the GNOME version of Genius Mathematics Tool executegnome-geniusfrom the
command line.

To start the command line only version, execute the following command:genius. This version does
not include the graphical environment and some functionality such as plotting will not be available.

2.2. When You Start Genius

When you start the GNOME edition of Genius Mathematics Tool,the window pictured inFigure 2-1is
displayed.

2



Chapter 2. Getting Started

Figure 2-1. Genius Mathematics Tool Window

The Genius Mathematics Tool window contains the following elements:

Menubar.

The menus on the menubar contain all of the commands that you need to work with files in Genius
Mathematics Tool. TheFile menu contains items for loading and saving items and creating new
programs. TheLoad and Run... command does not open a new window for the program, but just
executes the program directly. It is equivalent to theload command.

TheCalculator menu controls the calculator engine. It allows you to run thecurrently selected
program or to interrupt the current calculation. You can also look at the full expression of the last
answer (useful if the last answer was too large to fit onto the console), or you can view a listing of
the values of all user defined variables. Finally it allows plotting functions using a user friendly
dialog box.

The other menus have same familiar functions as in other applications.

Toolbar.

The toolbar contains a subset of the commands that you can access from the menubar.

Working area

The working area is the primary method of interacting with the application.

The working area initially has just theConsole tab which is the main way of interacting with the
calculator. Here you type expressions and the results are immediately returned after you hit the
Enter key.

Alternatively you can write longer programs and those can appear in separate tabs and can be stored
in files for later retrieval.

3



Chapter 2. Getting Started

4



Chapter 3. Basic Usage

3.1. Using the Work Area

Normally you interact with the calculator in theConsole tab of the work area. If you are running the text
only version then the console will be the only thing that is available to you. If you want to use Genius
Mathematics Tool as a calculator only, just type in your expression here and it willg et evaluated.

Type your expression into theConsole work area and press enter and the expression will be evaluated.
Expressions are written in a language called GEL. The most simple GEL expression just looks like
mathematics. For example

genius> 30*70 + 67^3.0 + ln(7) * (88.8/100)

or

genius> 62734 + 812634 + 77^4 mod 5

or

genius> | sin(37) - e^7 |

or

genius> sum n=1 to 70 do 1/n

(Last is the harmonic sum from 1 to 70)

To get a list of functions and commands, type:

genius> help

If you wish to get more help on a specific function, type:

genius> help FunctionName

To view this manual, type:

genius> manual

Suppose you have previously saved some GEL commands as a program to a file and you now want to
execute them. To load this program from the filepath/to/program.gel, type

genius> load path/to/program.gel

5



Chapter 3. Basic Usage

Genius Mathematics Tool keeps track of the current directory. To list files in the current directory typels,
to change directory docd directory as in the unix command shell.

3.2. To Create a New Program

To start writing a new program, chooseFile−→New Program. A new tab will appear in the work area.
You can write aGEL program in this work area. Once you have written your programyou can run it by
Calculator−→Run. This will execute your program and will display any output on theConsole tab.
Executing a program is equivalent of taking the text of the program and typing it into the console. The
only difference is that this input is done independent of theconsole and just the output goes onto the
console.Calculator−→Run will always run the currently selected program even if you are on the
Console tab. The currently selected program has its tab in bold type.To select a program, just click on
its tab.

To save the program you’ve just written, chooseFile−→Save As...

3.3. To Open and Run a Program

To open a file, chooseFile−→Open. A new tab containing the file will appear in the work area. Youcan
use this to edit the file.

To run a program from a file, chooseFile−→Load and Run.... This will run the program without
opening it in a separate tab. This is equivalent to theload command.

6



Chapter 4. Plotting

Plotting support is only available in the graphical GNOME version. All plotting accessible from the
graphical interface is available from theCreate Plot window. You can access this window by either
clicking on thePlot button on the toolbar or selectingPlot from theCalculator menu. You can also
access the plotting functionality by using theplotting functionsof the GEL language. SeeChapter 5to
find out how to enter expressions that Genius understands.

4.1. Line Plots

To graph real valued functions of one variable open theCreate Plot window. You can also use the
LinePlot function on the command line (see its documentation).

Once you click thePlot button, a window opens up with some notebooks in it. You want to be in the
Function line plot notebook tab, and inside you want to be on theFunctions / Expressions notebook
tab. SeeFigure 4-1.

Figure 4-1. Create Plot Window

Into the text boxes just type in expressions wherex is the independent variable. You can also just give
names of functions such ascos rather then having to typecos(x). You can graph up to ten functions. If
you make a mistake and Genius cannot parse the input it will signify this with a warning icon on the right
of the text input box where the error occurred, as well as giving you an error dialog. You can change the
ranges of the dependent and independent variables in the bottom part of the dialog. Pressing thePlot
button produces the graph shown inFigure 4-2.

7



Chapter 4. Plotting

Figure 4-2. Plot Window

From here you can print out the plot, create encapsulated postscript or a PNG version of the plot or
change the zoom. If the dependent axis was not set correctly you can have Genius fit it by finding out the
extrema of the graphed functions.

For plotting using the command line see the documentation oftheLinePlot function.

4.2. Parametric Plots

In the create plot window, you can also choose theParametric notebook tab to create two dimensional
parametric plots. This way you can plot a single parametric function. You can either specify the points as
x and y, or giving a single complex number. SeeFigure 4-3.

8



Chapter 4. Plotting

Figure 4-3. Parametric Plot Tab

An example of a parametric plot is given inFigure 4-3. Similar operations can be done on such graphs as
can be done on the other line plots. For plotting using the command line see the documentation of the
LinePlotParametric or LinePlotCParametric function.

Figure 4-4. Parametric Plot

4.3. Slopefield Plots

In the create plot window, you can also choose theSlope field notebook tab to create a two dimensional
slope field plot. Similar operations can be done on such graphs as can be done on the other line plots. For
plotting using the command line see the documentation of theSlopefieldPlot function.

9



Chapter 4. Plotting

When a slope field is active, there is an extraSolver menu available, through which you can bring up the
solver dialog. Here you can have Genius plot specific solutions for the given initial conditions. You can
either specify initial conditions in the dialog, or you can click on the plot directly to specify the initial
point. While the solver dialog is active, the zooming by clicking and dragging does not work. You have
to close the dialog first if you want to zoom using the mouse.

The solver uses the standard Runge-Kutta method. The plots will stay on the screen until cleared. The
solver will stop whenever it reaches the boundary of the plotwindow. Zooming does not change the
limits or parameters of the solutions, you will have to clearand redraw them with appropriate
parameters. You can also use theSlopefieldDrawSolution function to draw solutions from the
command line or programs.

4.4. Vectorfield Plots

In the create plot window, you can also choose theVector field notebook tab to create a two dimensional
vector field plot. Similar operations can be done on such graphs as can be done on the other line plots.
For plotting using the command line see the documentation oftheVectorfieldPlot function.

By default the direction and magnitude of the vector field is shown. To only show direction and not the
magnitude, check the appropriate checkbox to normalize thearrow lengths.

When a vector field is active, there is an extraSolver menu available, through which you can bring up
the solver dialog. Here you can have Genius plot specific solutions for the given initial conditions. You
can either specify initial conditions in the dialog, or you can click on the plot directly to specify the
initial point. While the solver dialog is active, the zooming by clicking and dragging does not work. You
have to close the dialog first if you want to zoom using the mouse.

The solver uses the standard Runge-Kutta method. The plots will stay on the screen until cleared.
Zooming does not change the limits or parameters of the solutions, you will have to clear and redraw
them with appropriate parameters. You can also use theVectorfieldDrawSolution function to draw
solutions from the command line or programs.

4.5. Surface Plots

Genius can also plot surfaces. Select theSurface plot tab in the main notebook of theCreate Plot
window. Here you can specify a single expression which should use eitherx andy as real independent
variables orz as a complex variable (wherex is the real part ofz andy is the imaginary part). For
example to plot the modulus of the cosine function for complex parameters, you could enter|cos(z)|.
This would be equivalent to|cos(x+1i*y)|. SeeFigure 4-5. For plotting using the command line see
the documentation of theSurfacePlot function.

10



Chapter 4. Plotting

Figure 4-5. Surface Plot

11



Chapter 5. GEL Basics

GEL stands for Genius Extension Language. It is the languageyou use to write programs in Genius. A
program in GEL is simply an expression that evaluates to a number. Genius Mathematics Tool can
therefore be used as a simple calculator, or as a powerful theoretical research tool. The syntax is meant to
have as shallow of a learning curve as possible, especially for use as a calculator.

5.1. Values

Values in GEL can benumbers, Booleansor strings. Values can be used in calculations, assigned to
variables and returned from functions, among other uses.

5.1.1. Numbers

Integers are the first type of number in GEL. Integers are written in the normal way.

1234

Hexidecimal and octal numbers can be written using C notation. For example:

0x123ABC
01234

Or you can type numbers in an arbitrary base using<base>\<number>. Digits higher than 10 use letters
in a similar way to hexadecimal. For example, a number in base23 could be written:

23\1234ABCD

The second type of GEL number is rationals. Rationals are simply achieved by dividing two integers. So
one could write:

3/4

to get three quarters. Rationals also accept mixed fractionnotation. So in order to get one and three
tenths you could write:

1 3/10

The next type if number is floating point. These are entered ina similar fashion to C notation. You can
useE, e or @ as the exponent delimiter. Note that using the exponent delimiter gives a float even if there
is no decimal point in the number. Examples:

12



Chapter 5. GEL Basics

1.315
7.887e77
7.887e-77
.3
0.3
77e5

When Genius prints a floating point number it will always append a.0 even if the number is whole. This
is to indicate that floating point numbers are taken as imprecise quantities. When a number is written in
the scientific notation, it is always a floating point number and thus Genius does not print the.0.

The final type of number in gel is the complex numbers. You can enter a complex number as a sum of
real and imaginary parts. The imaginary part ends with ani. Here are examples of entering complex
numbers:

1+2i
8.01i
77*e^(1.3i)

Important: When entering imaginary numbers, a number must be in front of the i. If you use i by
itself, Genius will interpret this as referring to the variable i. If you need to refer to i by itself, use 1i

instead.

In order to use mixed fraction notation with imaginary numbers you must have the mixed fraction in
parentheses. (i.e., (1 2/5)i)

5.1.2. Booleans

Genius also supports native Boolean values. The two Booleanconstants are defined astrue andfalse;
these identifiers can be used like any other variable. You canalso use the identifiersTrue, TRUE, False
andFALSE as aliases for the above.

At any place where a Boolean expression is expected, you can use a Boolean value or any expression that
produces either a number or a Boolean. If Genius needs to evaluate a number as a Boolean it will
interpret 0 asfalse and any other number astrue.

In addition, you can do arithmetic with Boolean values. For example:

( (1 + true) - false ) * true

is the same as:

( (true or true) or not false ) and true

13



Chapter 5. GEL Basics

Only addition, subtraction and multiplication are supported. If you mix numbers with Booleans in an
expression then the numbers are converted to Booleans as described above. This means that, for example:

1 == true

always evaluates totrue since 1 will be converted totrue before being compared totrue.

5.1.3. Strings

Like numbers and Booleans, strings in GEL can be stored as values inside variables and passed to
functions. You can also concatenate a string with another value using the plus operator. For example:

a=2+3;"The result is: "+a

will create the string:

The result is: 5

You can also use C-like escape sequences such as\n,\t,\b,\a and\r. To get a\ or " into the string you
can quote it with a\. For example:

"Slash: \\ Quotes: \" Tabs: \t1\t2\t3"

will make a string:

Slash: \ Quotes: " Tabs: 1 2 3

In addition, you can use the library functionstring to convert anything to a string. For example:

string(22)

will return

"22"

Strings can also be compared with== (equal),!= (not equal) and<=> (comparison) operators

5.1.4. Null

There is a special value callednull. No operations can be performed on it, and nothing is printedwhen
it is returned. Therefore,null is useful when you do not want output from an expression. The value
null can be obtained as an expression when you type., the contantnull or nothing. By nothing we
mean that if you end an expression with a separator;, it is equivalent to ending it with a separator
followed by anull.

14



Chapter 5. GEL Basics

Example:

x=5;.
x=5;

Some functions returnnull when no value can be returned or an error happened. Alsonull is used as
an empty vector or matrix, or an empty reference.

5.2. Using Variables

Syntax:

VariableName

Example:

genius> e

= 2.71828182846

To evaluate a variable by itself, just enter the name of the variable. This will return the value of the
variable. You can use a variable anywhere you would normallyuse a number or string. In addition,
variables are necessary when defining functions that take arguments (seeSection 5.3.1).

Using Tab completion: You can use Tab completion to get Genius to complete variable names for
you. Try typing the first few letters of the name and pressing Tab.

Variable names are case sensitive: The names of variables are case sensitive. That means that
variables named hello, HELLO and Hello are all different variables.

5.2.1. Setting Variables

Syntax:

<identifier> = <value>
<identifier> := <value>

Example:

15



Chapter 5. GEL Basics

x = 3
x := 3

To assign to a variable, use the= or := operators. These operators set the value of the variable andreturn
the number you set, so you can do things like

a = b = 5

The= and:= operators can both be used to set variables. The difference between them is that the:=
operator always acts as an assignment operator, whereas the= operator may be interpreted as testing for
equality when used in a context where a Boolean expression isexpected.

For issues regarding the scope of variables, seeSection 6.5.

5.2.2. Built-in Variables

GEL has a number of built-in ‘variables’, such ase, pi or GoldenRatio. These are widely used
constants with a preset value, and they cannot be assigned new values. There are a number of other
built-in variables. SeeSection 11.4for a full list.

5.2.3. Previous Result Variable

TheAns andans variables can be used to get the result of the last expression. For example, if you had
performed some calculation, to add 389 to the result you could do:

Ans+389

5.3. Using Functions

Syntax:

FunctionName(argument1, argument2, ...)

Example:

Factorial(5)

16



Chapter 5. GEL Basics

cos(2*pi)
gcd(921,317)

To evaluate a function, enter the name of the function, followed by the arguments (if any) to the function
in parentheses. This will return the result of applying the function to its arguments. The number of
arguments to the function is, of course, different for each function.

There are many built-in functions, such assin, cos andtan. You can use thehelp built-in function to
get a list of available functions, or seeChapter 11for a full listing.

Using Tab completion: You can use Tab completion to get Genius to complete function names for
you. Try typing the first few letters of the name and pressing Tab.

Function names are case sensitive: The names of functions are case sensitive. That means that
functions named dosomething, DOSOMETHING and DoSomething are all different functions.

5.3.1. Defining Functions

Syntax:

function <identifier>(<comma separated arguments>) = <function body>
<identifier> = (‘() = <function body>)

The‘ is the backquote character, and signifies an anonymous function. By setting it to a variable name
you effectively define a function.

A function takes zero or more comma separated arguments, andreturns the result of the function body.
Defining your own functions is primarily a matter of convenience; one possible use is to have sets of
functions defined in GEL files which Genius can load in order tomake available. Example:

function addup(a,b,c) = a+b+c

thenaddup(1,4,9) yields 14

5.3.2. Variable Argument Lists

If you include... after the last argument name in the function declaration, then Genius will allow any
number of arguments to be passed in place of that argument. Ifno arguments were passed then that
argument will be set tonull. Otherwise, it will be a horizontal vector containing all the arguments. For
example:

function f(a,b...) = b

17



Chapter 5. GEL Basics

Thenf(1,2,3) yields[2,3], whilef(1) yields anull.

5.3.3. Passing Functions to Functions

In Genius, it is possible to pass a function as an argument to another function. This can be done using
either ‘function nodes’ or anonymous functions.

If you do not enter the parentheses after a function name, instead of being evaluated, the function will
instead be returned as a ‘function node’. The function node can then be passed to another function.
Example:

function f(a,b) = a(b)+1;
function b(x) = x*x;
f(b,2)

If you want to pass a function that doesn’t exist yet, you can use an anonymous function (see
Section 5.3.1).

Syntax:

function(<comma separated arguments>) = <function body>
‘(<comma separated arguments>) = <function body>

Example:

function f(a,b) = a(b)+1;
f(‘(x) = x*x,2)

5.3.4. Operations on Functions

Some functions allow arithmetic operations, and some single argument functions such asexp or ln, to
operate on the function. For example,

exp(sin*cos+4)

will return a function that does

exp(sin(x)*cos(x)+4)

This can be useful when quickly defining functions. For example to create a function to perform the
above operation, you can just type:

f = exp(sin*cos+4)

This can also be used in plotting. For example, to plot sin squared you can enter:

18



Chapter 5. GEL Basics

LinePlot(sin^2)

Warning

Not all functions can be used in this way. In addition, when you use a binary
operation the functions must take the same arguments.

5.4. Absolute Value / Modulus

You can make an absolute value of something by putting the|’s around it. For example:

|a-b|

In case the expression is a complex number the result will be the modulus (distance from the origin). For
example:|3 * e^(1i*pi)| returns 3.

5.5. Separator

In GEL if you want to type more than one command you have to use the; operator, which is a way to
separate expressions, such a combined expression will return whatever is the result of the last one, so
suppose you type the following:

3 ; 5

This expression will yield 5.

This will require some parenthesizing to make it unambiguous sometimes, especially if the; is not the
top most primitive. This slightly differs from other programming languages where the; is a terminator
of statements, whereas in GEL it’s actually a binary operator. If you are familiar with pascal this should
be second nature. However genius can let you pretend it is a terminator somewhat, if a; is found at the
end of a parenthesis or a block, genius will itself append a null node to it as if you would have written
;null. This is usefull in case you do not want to return a value from say a loop, or if you handle the
return differently. Note that it will slightly slow down thecode if it is executed too often as there is one
more operator involved.

19



Chapter 5. GEL Basics

5.6. Modular Evaluation

Sometimes when working with large numbers, it might be faster if results are modded after each
calculation. To use it you just add "mod <integer>" after theexpression. Example:

2^(5!) * 3^(6!) mod 5

You can calculate the inverses of numbers mod some integer byjust using rational numbers (of course
the inverse has to exist). Examples:

10^-1 mod 101
1/10 mod 101

You can also do modular evaluation with matrices including taking inverses, powers and dividing.
Example:

A = [1,2;3,4]
B = A^-1 mod 5
A*B mod 5

This should yield the identity matrix as B will be the inverseof A mod 5.

Some functions such assqrt or log work in a different way when in modulo mode. These will then
work like their discrete versions working within the ring ofintegers you selected. For example:

genius> sqrt(4) mod 7
=
[2, 5]
genius> 2*2 mod 7
= 4

sqrt will actually return all the possible square roots.

5.7. List of GEL Operators

As everything in gel is really just an expression, it is really just all connected together with operators.
Here is a list of the operators in GEL.

a;b

The separator, just evaluates botha andb, but returns only the result ofb.

a=b

The assignment operator. This assignsb to a (a must be a validlvalue) (note however that this
operator may be translated to== if used in a place where boolean expression is expected)

20



Chapter 5. GEL Basics

a:=b

The assignment operator. Assignsb to a (a must be a validlvalue). This is different from= because
it never gets translated to a==.

|a|

Absolute value or modulus (ifa is a complex number).

See Mathworld (http://mathworld.wolfram.com/AbsoluteValue.html) for more information.

a^b

Exponentiation, raisesa to thebth power.

a.^b

Element by element exponentiation. Raise each element of a matrix a to thebth power. Or ifb is a
matrix of the same size asa, then do the operation element by element. Ifa is a number andb is a
matrix then it creates matrix of the same size asb with a raised to all the different powers inb.

a+b

Addition. Adds two numbers, matrices, functions or strings. If you add a string to anything the
result will just be a string.

a-b

Subtraction. Subtract two numbers, matrices or functions.

a*b

Multiplication. This is the normal matrix multiplication.

a.*b

Element by element multiplication ifa andb are matrices.

a/b

Division.

a./b

Element by element division.

a\b

Back division. That is this is the same asb/a.

a.\b

Element by element back division.

21



Chapter 5. GEL Basics

a%b

The mod operator. This does not turn on themodular mode, but just returns the remainder ofa/b.

a.%b

Element by element the mod operator. Returns the remainederafter element by elementa./b.

a mod b

Modular evaluation operator. The expressiona is evaluated modulob. SeeSection 5.6. Some
functions and operators behave differently modulo an integer.

a!

Factorial operator. This is like1*...*(n-2)*(n-1)*n.

a!!

Double factorial operator. This is like1*...*(n-4)*(n-2)*n.

a==b

Equality operator (returnstrue or false).

a!=b

Inequality operator, returnstrue if a does not equalb else returnsfalse.

a<>b

Alternative inequality operator, returnstrue if a does not equalb else returnsfalse.

a<=b

Less than or equal operator, returnstrue if a is less than or equal tob else returnsfalse.

a>=b

Greater than or equal operator, returnstrue if a is greater than or equal tob else returnsfalse.

a<=>b

Comparison operator. Ifa is equal tob it returns 0, ifa is less thanb it returns -1 and ifa is greater
thanb it returns 1.

a and b

Logical and.

a or b

Logical or.

22



Chapter 5. GEL Basics

a xor b

Logical xor.

not a

Logical not.

-a

Negation operator.

&a

Variable referencing (to pass a reference to something). SeeSection 6.7.

*a

Variable dereferencing (to access a referenced varible). SeeSection 6.7.

a’

Matrix conjugate transpose.

a.’

Matrix transpose, does not conjugate the entries.

a@(b,c)

Get element of a matrix in rowb and columnc. If b, c are vectors, then this gets the corresponding
rows columns or submatrices.

a@(b,)

Get row of a matrix (or rows ifb is a vector).

a@(b,:)

Same as above.

a@(,c)

Get column of a matrix (or columns ifc is a vector).

a@(:,c)

Same as above.

a@(b)

Get an element from a matrix treating it as a vector. This willtraverse the matrix row-wise.

23



Chapter 5. GEL Basics

a:b

Build a vector froma to b (or specify a row, column region for the@ operator). For example to get
rows 2 to 4 of mamtrixA we could do

A@(2:4,)

as2:4 will return a vector[2,3,4].

a:b:c

Build a vector froma to c with b as a step. That is for example

genius> 1:2:9
=
‘[1, 3, 5, 7, 9]

(a)i

Make a imaginary number (multiplya by the imaginary). Note that normally the numberi is
written as1i. So the above is equal to

(a)*1i

‘a

Quote an identifier so that it doesn’t get evaluated. Or quotea matrix so that it doesn’t get expanded.

Note: The @() operator makes the : operator most useful. With this you can specify regions of a
matrix. So that a@(2:4,6) is the rows 2,3,4 of the column 6. Or a@(,1:2) will get you the first two
columns of a matrix. You can also assign to the @() operator, as long as the right value is a matrix
that matches the region in size, or if it is any other type of value.

Note: The comparison operators (except for the <=> operator which behaves normally), are not
strictly binary operators, they can in fact be grouped in the normal mathematical way, e.g.:
(1<x<=y<5) is a legal boolean expression and means just what it should, that is (1<x and x≤y and
y<5)

Note: The unitary minus operates in a different fashion depending on where it appears. If it appears
before a number it binds very closely, if it appears in front of an expression it binds less than the
power and factorial operators. So for example -1^k is really (-1)^k, but -foo(1)^k is really
-(foo(1)^k). So be careful how you use it and if in doubt, add parentheses.

24



Chapter 6. Programming with GEL

6.1. Conditionals

Syntax:

if <expression1> then <expression2> [else <expression3>]

If else is omitted, then if theexpression1 yieldsfalse or 0,NULL is returned.

Examples:

if(a==5)then(a=a-1)
if b<a then b=a
if c>0 then c=c-1 else c=0
a = ( if b>0 then b else 1 )

Note that= will be translated to== if used inside the expression forif, so

if a=5 then a=a-1

will be interpreted as:

if a==5 then a:=a-1

6.2. Loops

6.2.1. While Loops

Syntax:

while <expression1> do <expression2>
until <expression1> do <expression2>
do <expression2> while <expression1>
do <expression2> until <expression1>

These are similiar to other languages, however they return the result of the last iteration orNULL if no
iteration was done. In the boolean expression,= is translated into== just as for theif statement.

25



Chapter 6. Programming with GEL

6.2.2. For Loops

Syntax:

for <identifier> = <from> to <to> do <body>
for <identifier> = <from> to <to> by <increment> do <body>

Loop with identifier being set to all values from<from> to <to>, optionally using an increment other
than 1. These are faster, nicer and more compact than the normal loops such as above, but less flexible.
The identifier must be an identifier and can’t be a dereference. The value of identifier is the last value of
identifier, or<from> if body was never evaluated. The variable is guaranteed to beinitialized after a
loop, so you can safely use it. Also the<from>, <to> and<increment> must be non complex values.
The<to> is not guaranteed to be hit, but will never be overshot, for example the following prints out odd
numbers from 1 to 19:

for i = 1 to 20 by 2 do print(i)

6.2.3. Foreach Loops

Syntax:

for <identifier> in <matrix> do <body>

For each element, going row by row from left to right do the body. To print numbers 1,2,3 and 4 in this
order you could do:

for n in [1,2:3,4] do print(n)

If you wish to run through the rows and columns of a matrix, youcan use the RowsOf and ColumnsOf
functions which return a vector of the rows or columns of the matrix. So,

for n in RowsOf ([1,2:3,4]) do print(n)

will print out [1,2] and then [3,4].

6.2.4. Break and Continue

You can also use thebreak andcontinue commands in loops. The continuecontinue command will
restart the current loop at its next iteration, while thebreak command exits the current loop.

while(<expression1>) do (
if(<expression2>) break
else if(<expression3>) continue;
<expression4>

)

26



Chapter 6. Programming with GEL

6.3. Sums and Products

Syntax:

sum <identifier> = <from> to <to> do <body>
sum <identifier> = <from> to <to> by <increment> do <body>
sum <identifier> in <matrix> do <body>
prod <identifier> = <from> to <to> do <body>
prod <identifier> = <from> to <to> by <increment> do <body>
prod <identifier> in <matrix> do <body>

If you substitutefor with sum or prod, then you will get a sum or a product instead of afor loop.
Instead of returning the last value, these will return the sum or the product of the values respectively.

If no body is executed (for examplesum i=1 to 0 do ...) thensum returns 0 andprod returns 1 as
is the standard convention.

6.4. Comparison Operators

The following standard comparison operators are supportedin GEL and have the obvious meaning:==,
>=, <=, !=, <>, <, >. They returntrue or false. The operators!= and<> are the same thing and mean
"is not equal to". GEL also supports the operator<=>, which returns -1 if left side is smaller, 0 if both
sides are equal, 1 if left side is larger.

Normally= is translated to== if it happens to be somewhere where GEL is expecing a condition such as
in the if condition. For example

if a=b then c
if a==b then c

are the same thing in GEL. However you should really use== or := when you want to compare or assign
respectively if you want your code to be easy to read and to avoid mistakes.

All the comparison operators (except for the<=> operator which behaves normally), are not strictly
binary operators, they can in fact be grouped in the normal mathematical way, e.g.: (1<x<=y<5) is a legal
boolean expression and means just what it should, that is (1<x and x≤y and y<5)

To build up logical expressions use the wordsnot, and, or, xor. The operatorsor andand are special
beasts as they evaluate their arguemnts one by one, so the usual trick for conditional evaluation works
here as well. For example,1 or a=1 will not seta=1 since the first argument was true.

27



Chapter 6. Programming with GEL

6.5. Global Variables and Scope of Variables

Like most programming languages, GEL has different types ofvariables. Normally when a variable is
defined in a function, it is visible from that function and from all functions that are called (all higher
contexts). For example, suppose a functionf defines a variablea and then calls functiong. Then
functiong can referencea. But oncef returns, the variablea goes out of scope. This is where GEL
differs from a language such as C. One could describe variables as being semi global in a sense For
example, the following code will print out 5. The functiong cannot be called on the top level (outsidef

asa will not be defined).

function f() = (a:=5; g());
function g() = print(a);
f();

If you define a variable inside a function it will override anyvariables defined in calling functions. For
example, we modify the above code and write:

function f() = (a:=5; g());
function g() = print(a);
a:=10;
f();

This code will still print out 5. But if you callg outside off then you will get a printout of 10. Note that
settinga to 5 insidef does not change the value ofa at the top (global) level, so if you now check the
value ofa it will still be 10.

Function arguments are exactly like variables defined inside the function, except that they are initialized
with the value that was passed to the function. Other than this point, they are treated just like all other
variables defined inside the function.

Functions are treated exactly like variables. Hence you canlocally redefine functions. Normally (on the
top level) you cannot redefine protected variables and functions. But locally you can do this. Consider
the following session:

genius> function f(x) = sin(x)^2

= (‘(x)=(sin(x)^2))
genius> function f(x) = sin(x)^2

= (‘(x)=(sin(x)^2))
genius> function g(x) = ((function sin(x)=x^10);f(x))

= (‘(x)=((sin:=(‘(x)=(x^10)));f(x)))
genius> g(10)

= 1e20

28



Chapter 6. Programming with GEL

Functions and variables defined at the top level are considered global. They are visible from anywhere.
As we said the following functionf will not change the value ofa to 5.

a=6;
function f() = (a:=5);
f();

Sometimes, however, it is neccessary to set a global variable from inside a function. When this behaviour
is needed, use theset function. Passing a string or a quoted identifier to this function sets the variable
globally (on the top level). For example, to seta to the value 3 you could call:

set(‘a,3)

or:

set("a",3)

Theset function always sets the toplevel global. There is no way to set a local variable in some function
from a subroutine. If this is required, must use passing by reference.

So to recap in a more technical language: Genius operates with different numberred contexts. The top
level is the context 0 (zero). Whenever a function is entered, the context is raised, and when the function
returns the context is lowered. A function or a variable is always visible from all higher numbered
contexts. When a variable was defined in a lower numbered context, then setting this variable has the
effect of creating a new local variable in the current context number and this variable will now be visible
from all higher numbered contexts.

There are also true local variables which are not seen from anywhere but the current context. Also when
returning functions by value it may reference variables notvisible from higher context and this may be a
problem. See the sectionsTrue Local VariablesandReturning Functions.

6.6. Returning

Normally a function is one or several expressions separatedby a semicolon, and the value of the last
expression is returned. This is fine for simple functions, but sometimes you do not want a function to
return the last thing calculated. You may, for example, wantto return from a middle of a function. In this
case, you can use thereturn keyword.return takes one argument, which is the value to be returned.

Example:

function f(x) = (
y=1;
while true do (

if x>50 then return y;

29



Chapter 6. Programming with GEL

y=y+1;
x=x+1

)
)

6.7. References

It may be neccessary for some functions to return more than one value. This may be accomplished by
returning a vector of values, but many times it is convenientto use passing a reference to a variable. You
pass a reference to a variable to a function, and the functionwill set the variable for you using a
dereference. You do not have to use references only for this purpose, but this is their main use.

When using functions which return values through references in the argument list, just pass the variable
name with an ampersand. For example the following code will compute an eigenvalue of a matrixA with
initial eigenvector guessx, and store the computed eigenvector into the variable namedv:

RayleighQuotientIteration (A,x,0.001,100,&v)

The details of how references work and the syntax is similar to the C language. The operator& references
a variable and* dereferences a variable. Both can only be applied to an identifier, so**a is not a legal
expression in GEL.

References are best explained by an example:

a=1;
b=&a;

*b=2;

nowa contains 2. You can also reference functions:

function f(x) = x+1;
t=&f;

*t(3)

gives us 4.

30



Chapter 6. Programming with GEL

6.8. Lvalues

An lvalue is the left hand side of an assignment. In other words, an lvalue is what you assign something
to. Valid lvalues are:

a

Identifier. Here we would be setting the varable of namea.

*a

Dereference of an identifier. This will set whatever variablea points to.

a@(<region>)

A region of a matrix. Here the region is specified normally as with the regular @() operator, and can
be a single entry, or an entire region of the matrix.

Examples:

a:=4

*tmp := 89
a@(1,1) := 5
a@(4:8,3) := [1,2,3,4,5]’

Note that both:= and= can be used interchangably. Except if the assignment appears in a condition. It is
thus always safer to just use:= when you mean assignment, and== when you mean comparison.

31



Chapter 7. Advanced Programming with GEL

7.1. Error Handling

If you detect an error in your function, you can bail out of it.For normal errors, such as wrong types of
arguments, you can fail to compute the function by adding thestatementbailout. If something went
really wrong and you want to completely kill the current computation, you can useexception.

For example if you want to check for arguments in your function. You could use the following code.

function f(M) = (
if not IsMatrix (M) then (

error ("M not a matrix!");
bailout

);
...

)

7.2. Toplevel Syntax

The synatax is slightly different if you enter statements onthe top level versus when they are inside
parentheses or inside functions. On the top level, enter acts the same as if you press return on the
command line. Therefore think of programs as just sequence of lines as if were entered on the command
line. In particular, you do not need to enter the separator atthe end of the line (unless it is of course part
of several statements inside parenteses).

The following code will produce an error when entered on the top level of a program, while it will work
just fine in a function.

if Something() then
DoSomething()

else
DoSomethingElse()

The problem is that after Genius Mathematics Tool sees the end of line after the second line, it will
decide that we have whole statement and it will execute it. After the execution is done, Genius
Mathematics Tool will go on to the next line, it will seeelse, and it will produce a parsing error. To fix
this, use parentheses. Genius Mathematics Tool will not be satisfied until it has found that all parenteses
are closed.

32



Chapter 7. Advanced Programming with GEL

if Something() then (
DoSomething()

) else (
DoSomethingElse()

)

7.3. Returning Functions

It is possible to return functions as value. This way you can build functions which construct special
purpose functions according to some parameters. The trickybit is what variables does the function see.
The way this works in GEL is that when a function returns another function, all identifiers referenced in
the function body that went out of scope are prepended a private dictionary of the returned function. So
the function will see all variables that were in scope when itwas defined. For example we define a
function which returns a function which adds 5 to its argument.

function f() = (
k = 5;
‘(x) = (x+k)

)

Notice that the function addsk to x. You could use this as follows.

g = f();
g(5)

And g(5) should return 10.

One thing to note is that the value ofk that is used is the one that’s in effect when thef returns. For
example:

function f() = (
k := 5;
function r(x) = (x+k);
k := 10;
r

)

will return a function that adds 10 to its argument rather than 5. This is because the extra dictionary is
created only when the context in which the function was defined ends, which is when the functionf
returns. This is consistent with how you would expect the functionr to work inside the functionf
according to the rules of scope of variables in GEL. Only those variables are added to the extra
dictionary that are in the context that just ended and no longer exists. Variables used in the function that
are in still valid contexts will work as usual, using the current value of the variable. The only difference
is with global variables and functions. All identifiers thatreferenced global variables at time of the
function definition are not added to the private dictionary.This is to avoid much unnecessary work when
returning functions and would rarely be a problem. For example, suppose that you delete the "k=5" from

33



Chapter 7. Advanced Programming with GEL

the functionf, and at the top level you definek to be say 5. Then when you runf, the functionr will not
putk into the private dictionary because it was global (toplevel) at the time of definition ofr.

Sometimes it is better to have more control over how variables are copied into the private dictionary.
Since version 1.0.7, you can specify which variables are copied into the private dictionary by putting
extra square brackets after the arguments with the list of variables to be copied separated by commas. If
you do this, then variables are copied into the private dictionary at time of the function definition, and the
private dictionary is not touched afterwards. For example

function f() = (
k := 5;
function r(x) [k] = (x+k);
k := 10;
r

)

will return a function that when called will add 5 to its argument. The local copy ofk was created when
the function was defined.

When you want the function to not have any private dictionarywhen put empty square brackets after the
argument list. Then no private dictionary will be created atall. Doing this is good to increase efficiency
when a private dictionary is not needed or when you want the function to lookup all variables as it sees
them when called. For example suppose you want the function returned fromf to see the value ofk from
the toplevel despite there being a local variable of the samename during definition. So the code

function f() = (
k := 5;
function r(x) [] = (x+k);
r

);
k := 10;
g = f();
g(10)

will return 20 and not 15, which would happen ifk with a value of 5 was added to the private dictionary.

7.4. True Local Variables

When passing functions into other functions, the normal scoping of variables might be undesired. For
example:

k := 10;
function r(x) = (x+k);
function f(g,x) = (

k := 5;
g(x)

);
f(r,1)

34



Chapter 7. Advanced Programming with GEL

you probably want the functionr when passed asg into f to seek as 10 rather than 5, so that the code
returns 11 and not 6. However, as written, the function when executed will see thek that is equal to 5.
There are two ways to solve this. One would be to haver getk in a private dictionary using the square
bracket notation sectionReturning Functions.

But there is another solution. Since version 1.0.7 there aretrue local variables. These are variables that
are visible only from the current context and not from any called functions. We could definek as a local
variable in the functionf. To do this add alocal statement as the first statement in the function (it must
always be the first statement in the function). You can also make any arguments be local variables as
well. That is,

function f(g,x) = (
local g,x,k;
k := 5;
g(x)

);

Then the code will work as expected and prints out 11. Note that the local statement initializes all the
refereced variables (except for function arguments) to anull.

If all variables are to be created as locals you can just pass an asterix instead of a list of variables. In this
case the variables will not be initialized until they are actually set of course. So the following definition
of f will also work:

function f(g,x) = (
local *;
k := 5;
g(x)

);

It is good practice that all functions that take other functions as arguments use local variables. This way
the passed function does not see implementation details andget confused.

7.5. GEL Startup Procedure

First the program looks for the installed library file (the compiled versionlib.cgel) in the installed
directory, then it looks into the current directory, and then it tries to load an uncompiled file called
~/.geniusinit.

If you ever change the the library its installed place, you’ll have to first compile it withgenius --compile
loader.gel > lib.cgel

35



Chapter 7. Advanced Programming with GEL

7.6. Loading Programs

Sometimes you have a larger program that you wrote into a file and want to read in that file. In these
situations, you have two options. You can keep the functionsyou use most inside the~/.geniusinit
file. Or if you want to load up a file in a middle of a session (or from within another file), you can type
load <list of filenames>at the prompt. This has to be done on the top level and not inside any function
or whatnot, and it cannot be part of any expression. It also has a slightly different syntax than the rest of
genius, more similiar to a shell. You can enter the file in quotes. If you use the ” quotes, you will get
exactly the string that you typed, if you use the "" quotes, special characters will be unescaped as they are
for strings. Example:

load program1.gel program2.gel
load "Weird File Name With SPACES.gel"

There are alsocd, pwd andls commands built in.cd will take one argument,ls will take an argument
which is like the glob in the unix shell (i.e., you can use wildcards).pwd takes no arguments. For
example:

cd directory_with_gel_programs
ls *.gel

36



Chapter 8. Matrices in GEL

Genius has support for vectors and matrices and a sizable library of matrix manipulation and linear
algebra functions.

8.1. Entering Matrices

To enter matrixes, you can use one of the following two syntaxes. You can either enter the matrix on one
line, separating values by commas and rows by semicolons. Oryou can enter each row on one line,
separating values by commas. You can also just combine the two methods. So to enter a 3x3 matrix of
numbers 1-9 you could do

[1,2,3;4,5,6;7,8,9]

or

[1, 2, 3
4, 5, 6
7, 8, 9]

Do not use both ’;’ and return at once on the same line though.

You can also use the matrix expansion functionality to entermatricies. For example you can do:

a = [ 1, 2, 3
4, 5, 6
7, 8, 9]

b = [ a, 10
11, 12]

and you should get

[1, 2, 3, 10
4, 5, 6, 10
7, 8, 9, 10
11, 11, 11, 12]

similiarly you can build matricies out of vectors and other stuff like that.

Another thing is that non-specified spots are initialized to0, so

[1, 2, 3
4, 5
6]

will end up being

37



Chapter 8. Matrices in GEL

[1, 2, 3
4, 5, 0
6, 0, 0]

When matrices are evaluated, they are evaluated and traversed row-wise. This is just like theM@(j)
operator which traverses the matrix row-wise.

Note: Be careful about using returns for expressions inside the [ ] brackets, as they have a slightly
different meaning there. You will start a new row.

8.2. Conjugate Transpose and Transpose Operator

You can conjugate transpose a matrix by using the’ operator. That is the entry in theith column and the
jth row will be the complex conjugate of the entry in thejth column and theith row of the original
matrix. For example:

[1,2,3]*[4,5,6]’

We transpose the second vector to make matrix multiplication possible. If you just want to transpose a
matrix without conjugating it, you would use the.’ operator. For example:

[1,2,3]*[4,5,6i].’

Note that normal transpose, that is the.’ operator, is much faster and will not create a new copy of the
matrix in memory. The conjugate transpose does create a new copy unfortunately. It is recommended to
always use the.’ operator when working with real matrices and vectors.

8.3. Linear Algebra

Genius implements many useful linear algebra and matrix manipulation routines. See theLinear Algebra
andMatrix Manipulationsections of the GEL function listing.

The linear algebra routines implemented in GEL do not currently come from a well tested numerical
package, and thus should not be used for critical numerical computation. On the other hand, Genius
implements very well many linear algebra operations with rational and integer coefficients. These are
inherently exact and in fact will give you much better results than common double precision routines for
linear algebra.

38



Chapter 8. Matrices in GEL

For example, it is pointless to compute the rank and nullspace of a floating point matrix since for all
practical purposes, we need to consider the matrix as havingsome slight errors. You are likely to get a
different result than you expect. The problem is that under asmall perturbation every matrix is of full
rank and invertible. If the matrix however is of rational numbers, then the rank and nullspace are always
exact.

In general when Genius computes the basis of a certain vectorspace (for example with theNullSpace) it
will give the basis as a matrix, in which the columns are the vectors of the basis. That is, when Genius
talks of a linear subspace it means a matrix whose column space is the given linear subspace.

It should be noted that Genius can remember certain properties of a matrix. For example, it will
remember that a matrix is in row reduced form. If many calls are made to functions which internally use
row reduced form of the matrix, we can just row reduce the matrix beforehand once. Successive calls to
rref will be very fast.

39



Chapter 9. Polynomials in GEL

Currently Genius can handle polynomials of one variable written out as vectors, and do some basic
operations with these. It is planned to expand this support further.

9.1. Using Polynomials

Currently polynomials in one variable are just horizontal vectors with value only nodes. The power of the
term is the position in the vector, with the first position being 0. So,

[1,2,3]

translates to a polynomial of

1 + 2*x + 3*x^2

You can add, subtract and multiply polynomials using theAddPoly, SubtractPoly, and
MultiplyPoly functions respectively. You can print a polynomial using thePolyToString function.
For example,

PolyToString([1,2,3],"y")

gives

3*y^2 + 2*y + 1

You can also get a function representation of the polynomialso that you can evaluate it. This is done by
usingPolyToFunction, which returns an anonymous function which you can assign tosomething.

f = PolyToFunction([0,1,1])
f(2)

It is also possible to find roots of polynomials of degrees 1 through 4 by using the function
PolynomialRoots, which calls the appropriate formula function. Higher degree polynomials must be
converted to functions and solved numerically using a function such asFindRootBisection,
FindRootFalsePosition, FindRootMullersMethod, orFindRootSecant.

SeeSection 11.15in the function list for the rest of functions acting on polynomials.

40



Chapter 10. Set Theory in GEL

Genius has some basic set theoretic functionality built in.Currently a set is just a vector (or a matrix).
Every distinct object is treated as a different element.

10.1. Using Sets

Just like vectors, objects in sets can include numbers, strings,null, matrices and vectors. It is planned in
the future to have a dedicated type for sets, rather than using vectors. Note that floating point numbers
are distinct from integers, even if they appear the same. That is, Genius will treat0 and0.0 as two
distinct elements. Thenull is treated as an empty set.

To build a set out of a vector, use theMakeSet function. Currently, it will just return a new vector where
every element is unique.

genius> MakeSet([1,2,2,3])

= [1, 2, 3]

Similarly there are functionsUnion, Intersection, SetMinus, which are rather self explanatory. For
example:

genius> Union([1,2,3], [1,2,4])

= [1, 2, 4, 3]

Note that no order is guaranteed for the return values. If youwish to sort the vector you should use the
SortVector function.

For testing membership, there are functionsIsIn andIsSubset, which return a boolean value. For
example:

genius> IsIn (1, [0,1,2])

= true

The inputIsIn(x,X) is of course equivalent toIsSubset([x],X). Note that since the empty set is a
subset of every set,IsSubset(null,X) is always true.

41



Chapter 11. List of GEL functions

To get help on a specific function from the console type:

help FunctionName

11.1. Commands

help

help

help FunctionName

Print help (or help on a function/command).

load

load "file.gel"

Load a file into the interpretor. The file will execute as if it were typed onto the command line.

cd

cd /directory/name

Change working directory to/directory/name.

pwd

pwd

Print the current working directory.

ls

ls

List files in the current directory.

42



Chapter 11. List of GEL functions

plugin

plugin plugin_name

Load a plugin. Plugin of that name must be installed on the system in the proper directory.

11.2. Basic

AskString

AskString (query)

AskString (query, default)

Asks a question and lets the user enter a string which it then returns. If the user cancels or closes the
window, thennull is returned. The execution of the program is blocked until the user responds. If
default is given, then it is pre-typed in for the user to just press enter on.

Compose

Compose (f,g)

Compose two functions and return a function that is the composition off andg.

ComposePower

ComposePower (f,n,x)

Compose and execute a function with itselfn times, passingx as argument. Returningx if n equals
0. Example:

genius> function f(x) = x^2 ;

genius> ComposePower (f,3,7)

= 5764801
genius> f(f(f(7)))

= 5764801

Evaluate

Evaluate (str)

Parses and evaluates a string.

43



Chapter 11. List of GEL functions

GetCurrentModulo

GetCurrentModulo

Get current modulo from the context outside the function. That is, if outside of the function was
executed in modulo (usingmod) then this returns what this modulo was. Normally the body ofthe
function called is not executed in modular arithmetic, and this builtin function makes it possible to
make GEL functions aware of modular arithmetic.

Identity

Identity (x)

Identity function, returns its argument.

IntegerFromBoolean

IntegerFromBoolean (bval)

Make integer (0 forfalse or 1 fortrue) from a boolean value.bval can also be a number in
which case a non-zero value will be interpreted astrue and zero will be interpretted asfalse.

IsBoolean

IsBoolean (arg)

Check if argument is a boolean (and not a number).

IsDefined

IsDefined (id)

Check if an id is defined. You should pass a string or and identifier. If you pass a matrix, each entry
will be evaluated separately and the matrix should contain strings or identifiers.

IsFunction

IsFunction (arg)

Check if argument is a function.

44



Chapter 11. List of GEL functions

IsFunctionOrIdentifier

IsFunctionOrIdentifier (arg)

Check if argument is a function or an identifier.

IsFunctionRef

IsFunctionRef (arg)

Check if argument is a function reference. This includes variable references.

IsMatrix

IsMatrix (arg)

Check if argument is a matrix. Even thoughnull is sometimes considered an empty matrix, the
functionIsMatrix does not considernull a matrix.

IsNull

IsNull (arg)

Check if argument is a null.

IsString

IsString (arg)

Check if argument is a text string.

IsValue

IsValue (arg)

Check if argument is a number.

Parse

Parse (str)

Parses but does not evaluate a string. Note that certain precomputation is done during the parsing
stage.

45



Chapter 11. List of GEL functions

SetFunctionFlags

SetFunctionFlags (id,flags...)

Set flags for a function, currently"PropagateMod" and"NoModuloArguments". If
"PropagateMod" is set, then the body of the function is evaluated in modular arithmetic when the
function is called inside a block that was evaluated using modular arithmetic (usingmod). If
"NoModuloArguments", then the arguments of the function are never evaluated using modular
arithmetic.

SetHelp

SetHelp (id,category,desc)

Set the category and help description line for a function.

SetHelpAlias

SetHelpAlias (id,alias)

Sets up a help alias.

chdir

chdir (dir)

Changes current directory, same as thecd.

display

display (str,expr)

Display a string and an expression with a colon to separate them.

error

error (str)

Prints a string to the error stream (onto the console).

exit

exit

46



Chapter 11. List of GEL functions

Aliases:quit

Exits the program.

false

false

Aliases:False FALSE

The false boolean value.

manual

manual

Displays the user manual.

print

print (str)

Prints an expression and then print a newline. The argumentstr can be any expression. It is made
into a string before being printed.

printn

printn (str)

Prints an expression without a trailing newline. The argumentstr can be any expression. It is made
into a string before being printed.

protect

protect (id)

Protect a variable from being modified. This is used on the internal GEL functions to avoid them
being accidentally overridden.

ProtectAll

ProtectAll ()

47



Chapter 11. List of GEL functions

Protect all currently defined variables, parameters and functions from being modified. This is used
on the internal GEL functions to avoid them being accidentally overridden. Normally Genius
Mathematics Tool considers unprotected variables as user defined.

set

set (id,val)

Set a global variable. Theid can be either a string or a quoted identifier as follows. For example:

set(‘x,1)

will set the global variablex to the value 1.

string

string (s)

Make a string. This will make a string out of any argument.

true

true

Aliases:True TRUE

The true boolean value.

undefine

undefine (id)

Alias: Undefine

Undefine a variable. This includes locals and globals, everyvalue on all context levels is wiped.
This function should really not be used on local variables. Avector of identifiers can also be passed
to undefine several variables.

UndefineAll

UndefineAll ()

Undefine all unprotected global variables (including functions and parameters). Normally Genius
Mathematics Tool considers protected variables as system defined functions and variables. Note that

48



Chapter 11. List of GEL functions

UndefineAll only removes the global definition of symbols not local ones,so that it may be run
from inside other functions safely.

unprotect

unprotect (id)

Unprotect a variable from being modified.

UserVariables

UserVariables ()

Return a vector of identifiers of user defined (unprotected) global variables.

wait

wait (secs)

Waits a specified number of seconds.secs must be nonnegative. Zero is accepted and nothing
happens in this case, except possibly user interface eventsare processed.

version

version

Returns the version of Genius as a horizontal 3-vector with major version first, then minor version
and finally patchlevel.

warranty

warranty

Gives the warranty information.

11.3. Parameters

ChopTolerance

ChopTolerance = number

49



Chapter 11. List of GEL functions

Tolerance of theChop function.

ContinuousNumberOfTries

ContinuousNumberOfTries = number

How many iterations to try to find the limit for continuity andlimits.

ContinuousSFS

ContinuousSFS = number

How many successive steps to be within tolerance for calculation of continuity.

ContinuousTolerance

ContinuousTolerance = number

Tolerance for continuity of functions and for calculating the limit.

DerivativeNumberOfTries

DerivativeNumberOfTries = number

How many iterations to try to find the limit for derivative.

DerivativeSFS

DerivativeSFS = number

How many successive steps to be within tolerance for calculation of derivative.

DerivativeTolerance

DerivativeTolerance = number

Tolerance for calculating the derivatives of functions.

ErrorFunctionTolerance

ErrorFunctionTolerance = number

Tolerance of theErrorFunction.

50



Chapter 11. List of GEL functions

FloatPrecision

FloatPrecision = number

Floating point precision.

FullExpressions

FullExpressions = boolean

Print full expressions, even if more than a line.

GaussDistributionTolerance

GaussDistributionTolerance = number

Tolerance of theGaussDistribution function.

IntegerOutputBase

IntegerOutputBase = number

Integer output base.

IsPrimeMillerRabinReps

IsPrimeMillerRabinReps = number

Number of extra Miller-Rabin tests to run on a number before declaring it a prime inIsPrime.

LinePlotWindow

LinePlotWindow = [x1,x2,y1,y2]

Sets the limits forline plotting functionssuch asLinePlot.

LinePlotDrawLegends

LinePlotDrawLegends = true

Tells genius to draw the legends forline plotting functionssuch asLinePlot.

51



Chapter 11. List of GEL functions

MaxDigits

MaxDigits = number

Maximum digits to display.

MaxErrors

MaxErrors = number

Maximum errors to display.

MixedFractions

MixedFractions = boolean

If true, mixed fractions are printed.

NumericalIntegralFunction

NumericalIntegralFunction = function

The function used for numerical integration inNumericalIntegral.

NumericalIntegralSteps

NumericalIntegralSteps = number

Steps to perform inNumericalIntegral.

OutputChopExponent

OutputChopExponent = number

When another number in the object being printed (a matrix or avalue) is greater than
10-OutputChopWhenExponent, and the number being printed is less than 10-OutputChopExponent, then display0.0
instead of the number.

Output is never chopped ifOutputChopExponent is zero. It must be a nonnegative integer.

If you want output always chopped according toOutputChopExponent, then set
OutputChopWhenExponent, to something greater than or equal toOutputChopExponent.

52



Chapter 11. List of GEL functions

OutputChopWhenExponent

OutputChopWhenExponent = number

When to chop output. SeeOutputChopExponent.

OutputStyle

OutputStyle = string

Output style, this can benormal, latex, mathml or troff.

This affects mostly how matrices and fractions are printed out and is useful for pasting into
documents. For example you can set this to the latex by:

OutputStyle = "latex"

ResultsAsFloats

ResultsAsFloats = boolean

Convert all results to floats before printing.

ScientificNotation

ScientificNotation = boolean

Use scientific notation.

SumProductNumberOfTries

SumProductNumberOfTries = number

How many iterations to try forInfiniteSum andInfiniteProduct.

SumProductSFS

SumProductSFS = number

How many successive steps to be within tolerance forInfiniteSum andInfiniteProduct.

53



Chapter 11. List of GEL functions

SumProductTolerance

SumProductTolerance = number

Tolerance forInfiniteSum andInfiniteProduct.

SurfacePlotWindow

SurfacePlotWindow = [x1,x2,y1,y2,z1,z2]

Sets the limits for surface plotting (SeeSurfacePlot).

VectorfieldNormalized

VectorfieldNormalized = true

Should the vectorfield plotting have normalized arrow length. If true, vector fields will only show
direction and not magnitude. (SeeVectorfieldPlot).

11.4. Constants

CatalanConstant

CatalanConstant

Catalan’s Constant, approximately 0.915... It is defined tobe the series where terms are
(-1^k)/((2*k+1)^2), wherek ranges from 0 to infinity.

See Mathworld (http://mathworld.wolfram.com/CatalansConstant.html) for more information.

EulerConstant

EulerConstant

Aliases:gamma

Euler’s Constant gamma. Sometimes called the Euler-Mascheroni constant.

See Wikipedia (http://en.wikipedia.org/wiki/Euler-Mascheroni_constant) or Planetmath
(http://planetmath.org/encyclopedia/MascheroniConstant.html) or Mathworld
(http://mathworld.wolfram.com/Euler-MascheroniConstant.html) for more information.

54



Chapter 11. List of GEL functions

GoldenRatio

GoldenRatio

The Golden Ratio.

See Wikipedia (http://en.wikipedia.org/wiki/Golden_ratio) or Planetmath
(http://planetmath.org/encyclopedia/GoldenRatio.html) or Mathworld
(http://mathworld.wolfram.com/GoldenRatio.html) for more information.

Gravity

Gravity

Free fall acceleration at sea level.

See Wikipedia (http://en.wikipedia.org/wiki/Standard_gravity) for more information.

e

e

The base of the natural logarithm.e^x is the exponential functionexp. This is the number
approximately 2.71828182846...

See Wikipedia (http://en.wikipedia.org/wiki/E_(mathematical_constant)) or Planetmath
(http://planetmath.org/encyclopedia/E.html) or Mathworld (http://mathworld.wolfram.com/e.html)
for more information.

pi

pi

The number pi, that is the ratio of a circle’s circumference to its diameter. This is approximately
3.14159265359...

See Wikipedia (http://en.wikipedia.org/wiki/Pi) or Planetmath
(http://planetmath.org/encyclopedia/Pi.html) or Mathworld (http://mathworld.wolfram.com/Pi.html)
for more information.

55



Chapter 11. List of GEL functions

11.5. Numeric

AbsoluteValue

AbsoluteValue (x)

Aliases:abs

Absolute value of a number and ifx is a complex value the modulus ofx. I.e. this the distance ofx
to the origin.

See Wikipedia (http://en.wikipedia.org/wiki/Absolute_value), Planetmath (absolute value)
(http://planetmath.org/encyclopedia/AbsoluteValue.html), Planetmath (modulus)
(http://planetmath.org/encyclopedia/ModulusOfComplexNumber.html), Mathworld (absolute value)
(http://mathworld.wolfram.com/AbsoluteValue.html) orMathworld (complex modulus)
(http://mathworld.wolfram.com/ComplexModulus.html) for more information.

Chop

Chop (x)

Replace very small number with zero.

ComplexConjugate

ComplexConjugate (z)

Aliases:conj Conj

Calculates the complex conjugate of the complex numberz. If z is a vector or matrix, all its
elements are conjugated.

See Wikipedia (http://en.wikipedia.org/wiki/Complex_conjugate) for more information.

Denominator

Denominator (x)

Get the denominator of a rational number.

See Wikipedia (http://en.wikipedia.org/wiki/Denominator) for more information.

56



Chapter 11. List of GEL functions

FractionalPart

FractionalPart (x)

Return the fractional part of a number.

See Wikipedia (http://en.wikipedia.org/wiki/Fractional_part) for more information.

Im

Im (z)

Aliases:ImaginaryPart

Get the imaginary part of a complex number.

See Wikipedia (http://en.wikipedia.org/wiki/Imaginary_part) for more information.

IntegerQuotient

IntegerQuotient (m,n)

Division without remainder.

IsComplex

IsComplex (num)

Check if argument is a complex (non-real) number.

IsComplexRational

IsComplexRational (num)

Check if argument is a possibly complex rational number.

IsFloat

IsFloat (num)

Check if argument is a floating point number (non-complex).

57



Chapter 11. List of GEL functions

IsGaussInteger

IsGaussInteger (num)

Aliases:IsComplexInteger

Check if argument is a possibly complex integer.

IsInteger

IsInteger (num)

Check if argument is an integer (non-complex).

IsNonNegativeInteger

IsNonNegativeInteger (num)

Check if argument is a non-negative real integer.

IsPositiveInteger

IsPositiveInteger (num)

Aliases:IsNaturalNumber

Check if argument is a positive real integer. Note that we accept the convention that 0 is not a
natural number.

IsRational

IsRational (num)

Check if argument is a rational number (non-complex).

IsReal

IsReal (num)

Check if argument is a real number.

58



Chapter 11. List of GEL functions

Numerator

Numerator (x)

Get the numerator of a rational number.

See Wikipedia (http://en.wikipedia.org/wiki/Numerator) for more information.

Re

Re (z)

Aliases:RealPart

Get the real part of a complex number.

See Wikipedia (http://en.wikipedia.org/wiki/Real_part) for more information.

Sign

Sign (x)

Aliases:sign

Return the sign of a number. That is returns-1 if value is negative,0 if value is zero and1 if value
is positive. Ifx is a complex value thenSign returns the direction or 0.

ceil

ceil (x)

Aliases:Ceiling

Get the lowest integer more than or equal to n.

exp

exp (x)

The exponential function. This is the functione^x wheree is thebase of the natural logarithm.

59



Chapter 11. List of GEL functions

See Wikipedia (http://en.wikipedia.org/wiki/Exponential_function) or Planetmath
(http://planetmath.org/encyclopedia/LogarithmFunction.html) or Mathworld
(http://mathworld.wolfram.com/ExponentialFunction.html) for more information.

float

float (x)

Make number a floating point value. That is returns the floating point representation of the number
x.

floor

floor (x)

Aliases:Floor

Get the highest integer less than or equal ton.

ln

ln (x)

The natural logarithm, the logarithm to basee.

log

log (x)

log (x,b)

Logarithm ofx baseb (callsDiscreteLog if in modulo mode), if base is not given,e is used.

log10

log10 (x)

Logarithm ofx base 10.

log2

log2 (x)

Aliases:lg

60



Chapter 11. List of GEL functions

Logarithm ofx base 2.

max

max (a,args...)

Aliases:Max Maximum

Returns the maximum of arguments or matrix.

min

min (a,args...)

Aliases:Min Minimum

Returns the minimum of arguments or matrix.

rand

rand (size...)

Generate random float in the range[0,1). If size is given then a matrix (if two numbers are
specified) or vector (if one number is specified) of the given size returned.

randint

randint (max,size...)

Generate random integer in the range[0,max). If size is given then a matrix (if two numbers are
specified) or vector (if one number is specified) of the given size returned. For example

genius> randint(4)

= 3
genius> randint(4,2)

=
[0 1]
genius> randint(4,2,3)

=
[2 2 1
0 0 3]

61



Chapter 11. List of GEL functions

round

round (x)

Aliases:Round

Round a number.

sqrt

sqrt (x)

Aliases:SquareRoot

The square root. When operating modulo some integer will return either anull or a vector of the
square roots. Examples:

genius> sqrt(2)

= 1.41421356237
genius> sqrt(-1)

= 1i
genius> sqrt(4) mod 7

=
[2 5]
genius> 2*2 mod 7

= 4

See Planetmath (http://planetmath.org/encyclopedia/SquareRoot.html) for more information.

trunc

trunc (x)

Aliases:Truncate IntegerPart

Truncate number to an integer (return the integer part).

11.6. Trigonometry

acos

acos (x)

62



Chapter 11. List of GEL functions

Aliases:arccos

The arccos (inverse cos) function.

acosh

acosh (x)

Aliases:arccosh

The arccosh (inverse cosh) function.

acot

acot (x)

Aliases:arccot

The arccot (inverse cot) function.

acoth

acoth (x)

Aliases:arccoth

The arccoth (inverse coth) function.

acsc

acsc (x)

Aliases:arccsc

The inverse cosecant function.

acsch

acsch (x)

Aliases:arccsch

63



Chapter 11. List of GEL functions

The inverse hyperbolic cosecant function.

asec

asec (x)

Aliases:arcsec

The inverse secant function.

asech

asech (x)

Aliases:arcsech

The inverse hyperbolic secant function.

asin

asin (x)

Aliases:arcsin

The arcsin (inverse sin) function.

asinh

asinh (x)

Aliases:arcsinh

The arcsinh (inverse sinh) function.

atan

atan (x)

Aliases:arctan

Calculates the arctan (inverse tan) function.

64



Chapter 11. List of GEL functions

See Wikipedia (http://en.wikipedia.org/wiki/Arctangent) or Mathworld
(http://mathworld.wolfram.com/InverseTangent.html) for more information.

atanh

atanh (x)

Aliases:arctanh

The arctanh (inverse tanh) function.

atan2

atan2 (y, x)

Aliases:arctan2

Calculates the arctan2 function. Ifx>0 then it returnsatan(y/x). If x<0 then it returnssign(y)

* (pi - atan(|y/x|). Whenx=0 it returnssign(y) * pi/2. atan2(0,0) returns 0 rather
then failing.

See Wikipedia (http://en.wikipedia.org/wiki/Atan2) or Mathworld
(http://mathworld.wolfram.com/InverseTangent.html) for more information.

cos

cos (x)

Calculates the cosine function.

See Planetmath (http://planetmath.org/encyclopedia/DefinitionsInTrigonometry.html) for more
information.

cosh

cosh (x)

Calculates the hyperbolic cosine function.

See Planetmath (http://planetmath.org/encyclopedia/HyperbolicFunctions.html) for more
information.

65



Chapter 11. List of GEL functions

cot

cot (x)

The cotangent function.

See Planetmath (http://planetmath.org/encyclopedia/DefinitionsInTrigonometry.html) for more
information.

coth

coth (x)

The hyperbolic cotangent function.

See Planetmath (http://planetmath.org/encyclopedia/HyperbolicFunctions.html) for more
information.

csc

csc (x)

The cosecant function.

See Planetmath (http://planetmath.org/encyclopedia/DefinitionsInTrigonometry.html) for more
information.

csch

csch (x)

The hyperbolic cosecant function.

See Planetmath (http://planetmath.org/encyclopedia/HyperbolicFunctions.html) for more
information.

sec

sec (x)

The secant function.

66



Chapter 11. List of GEL functions

See Planetmath (http://planetmath.org/encyclopedia/DefinitionsInTrigonometry.html) for more
information.

sech

sech (x)

The hyperbolic secant function.

See Planetmath (http://planetmath.org/encyclopedia/HyperbolicFunctions.html) for more
information.

sin

sin (x)

Calculates the sine function.

See Planetmath (http://planetmath.org/encyclopedia/DefinitionsInTrigonometry.html) for more
information.

sinh

sinh (x)

Calculates the hyperbolic sine function.

See Planetmath (http://planetmath.org/encyclopedia/HyperbolicFunctions.html) for more
information.

tan

tan (x)

Calculates the tan function.

See Planetmath (http://planetmath.org/encyclopedia/DefinitionsInTrigonometry.html) for more
information.

tanh

tanh (x)

67



Chapter 11. List of GEL functions

The hyperbolic tangent function.

See Planetmath (http://planetmath.org/encyclopedia/HyperbolicFunctions.html) for more
information.

11.7. Number Theory

AreRelativelyPrime

AreRelativelyPrime (a,b)

Are the real integersa andb relatively prime? Returnstrue or false.

See Planetmath (http://planetmath.org/encyclopedia/RelativelyPrime.html) or Mathworld
(http://mathworld.wolfram.com/RelativelyPrime.html)for more information.

BernoulliNumber

BernoulliNumber (n)

Return thenth Bernoulli number.

See Wikipedia (http://en.wikipedia.org/wiki/Bernoulli_number) or Mathworld
(http://mathworld.wolfram.com/BernoulliNumber.html)for more information.

ChineseRemainder

ChineseRemainder (a,m)

Aliases:CRT

Find thex that solves the system given by the vectora and modulo the elements ofm, using the
Chinese Remainder Theorem.

See Wikipedia (http://en.wikipedia.org/wiki/Chinese_remainder_theorem) or Planetmath
(http://planetmath.org/encyclopedia/ChineseRemainderTheorem.html) or Mathworld
(http://mathworld.wolfram.com/ChineseRemainderTheorem.html) for more information.

68



Chapter 11. List of GEL functions

CombineFactorizations

CombineFactorizations (a,b)

Given two factorizations, give the factorization of the product.

SeeFactorize.

ConvertFromBase

ConvertFromBase (v,b)

Convert a vector of values indicating powers of b to a number.

ConvertToBase

ConvertToBase (n,b)

Convert a number to a vector of powers for elements in baseb.

DiscreteLog

DiscreteLog (n,b,q)

Find discrete log ofn baseb in F
q
, the finite field of orderq, whereq is a prime, using the

Silver-Pohlig-Hellman algoritm.

See Wikipedia (http://en.wikipedia.org/wiki/Discrete_logarithm) or Planetmath
(http://planetmath.org/encyclopedia/DiscreteLogarithm.html) or Mathworld
(http://mathworld.wolfram.com/DiscreteLogarithm.html) for more information.

Divides

Divides (m,n)

Checks divisibility (ifm dividesn).

EulerPhi

EulerPhi (n)

Compute the Euler phi function forn, that is the number of integers between 1 andn relatively
prime ton.

69



Chapter 11. List of GEL functions

See Wikipedia (http://en.wikipedia.org/wiki/Euler_phi) or Planetmath
(http://planetmath.org/encyclopedia/EulerPhifunction.html) or Mathworld
(http://mathworld.wolfram.com/TotientFunction.html)for more information.

ExactDivision

ExactDivision (n,d)

Returnn/d but only if d dividesn. If d does not dividen then this function returns garbage. This is
a lot faster for very large numbers than the operationn/d, but of course only useful if you know that
the division is exact.

Factorize

Factorize (n)

Return factorization of a number as a matrix. The first row is the primes in the factorization
(including 1) and the second row are the powers. So for example:

genius> Factorize(11*11*13)

=
[1 11 13
1 2 1]

See Wikipedia (http://en.wikipedia.org/wiki/Factorization) for more information.

Factors

Factors (n)

Return all factors ofn in a vector. This includes all the non-prime factors as well.It includes 1 and
the number itself. So for example to print all the perfect numbers (those that are sums of their
factors) up to the number 1000 you could do (this is of course very inefficent)

for n=1 to 1000 do (
if MatrixSum (Factors(n)) == 2*n then

print(n)
)

FermatFactorization

FermatFactorization (n,tries)

Attempt fermat factorization ofn into (t-s)*(t+s), returnst ands as a vector if possible, null
otherwise.tries specifies the number of tries before giving up.

70



Chapter 11. List of GEL functions

This is a fairly good factorization if your number is the product of two factors that are very close to
each other.

See Wikipedia (http://en.wikipedia.org/wiki/Fermat_factorization) for more information.

FindPrimitiveElementMod

FindPrimitiveElementMod (q)

Find the first primitive element in F
q
, the finite group of orderq. Of courseq must be a prime.

FindRandomPrimitiveElementMod

FindRandomPrimitiveElementMod (q)

Find a random primitive element in F
q
, the finite group of orderq (q must be a prime).

IndexCalculus

IndexCalculus (n,b,q,S)

Compute discrete log baseb of n in F
q
, the finite group of orderq (q a prime), using the factor base

S. S should be a column of primes possibly with second column precalculated by
IndexCalculusPrecalculation.

IndexCalculusPrecalculation

IndexCalculusPrecalculation (b,q,S)

Run the precalculation step ofIndexCalculus for logarithms baseb in F
q
, the finite group of

orderq (q a prime), for the factor baseS (whereS is a column vector of primes). The logs will be
precalculated and returned in the second column.

IsEven

IsEven (n)

Tests if an integer is even.

IsMersennePrimeExponent

IsMersennePrimeExponent (p)

71



Chapter 11. List of GEL functions

Tests if a positive integerp is a Mersenne prime exponent. That is if 2p-1 is a prime. It does this by
looking it up in a table of known values which is relatively short. See also
MersennePrimeExponentsandLucasLehmer.

See Wikipedia (http://en.wikipedia.org/wiki/Mersenne_prime), Planetmath
(http://planetmath.org/encyclopedia/MersenneNumbers.html), Mathworld
(http://mathworld.wolfram.com/MersennePrime.html) orGIMPS (http://www.mersenne.org/) for
more information.

IsNthPower

IsNthPower (m,n)

Tests if a rational numberm is a perfectnth power. See alsoIsPerfectPowerandIsPerfectSquare.

IsOdd

IsOdd (n)

Tests if an integer is odd.

IsPerfectPower

IsPerfectPower (n)

Check an integer is any perfect power, ab.

IsPerfectSquare

IsPerfectSquare (n)

Check an integer for being a perfect square of an integer. Thenumber must be a real integer.
Negative integers are of course never perfect squares of real integers.

IsPrime

IsPrime (n)

Tests primality of integers, for numbers less than 2.5e10 the answer is deterministic (if Riemann
hypothesis is true). For numbers larger, the probability ofa false positive depends on
IsPrimeMillerRabinReps. That is the probability of false positive is 1/4 to the power
IsPrimeMillerRabinReps. The default value of 22 yields a probability of about 5.7e-14.

72



Chapter 11. List of GEL functions

If false is returned, you can be sure that the number is a composite. Ifyou want to be absolutely
sure that you have a prime you can useMillerRabinTestSure but it may take a lot longer.

See Planetmath (http://planetmath.org/encyclopedia/PrimeNumber.html) or Mathworld
(http://mathworld.wolfram.com/PrimeNumber.html) for more information.

IsPrimitiveMod

IsPrimitiveMod (g,q)

Check ifg is primitive in F
q
, the finite group of orderq, whereq is a prime. Ifq is not prime results

are bogus.

IsPrimitiveModWithPrimeFactors

IsPrimitiveModWithPrimeFactors (g,q,f)

Check ifg is primitive in F
q
, the finite group of orderq, whereq is a prime andf is a vector of

prime factors ofq-1. If q is not prime results are bogus.

IsPseudoprime

IsPseudoprime (n,b)

If n is a pseudoprime baseb but not a prime, that is ifb^(n-1) == 1 mod n. This calles the
PseudoprimeTest

IsStrongPseudoprime

IsStrongPseudoprime (n,b)

Test ifn is a strong pseudoprime to baseb but not a prime.

Jacobi

Jacobi (a,b)

Aliases:JacobiSymbol

Calculate the Jacobi symbol (a/b) (b should be odd).

73



Chapter 11. List of GEL functions

JacobiKronecker

JacobiKronecker (a,b)

Aliases:JacobiKroneckerSymbol

Calculate the Jacobi symbol (a/b) with the Kronecker extension (a/2)=(2/a) when a odd, or (a/2)=0
when a even.

LeastAbsoluteResidue

LeastAbsoluteResidue (a,n)

Return the residue ofa modn with the least absolute value (in the interval -n/2 to n/2).

Legendre

Legendre (a,p)

Aliases:LegendreSymbol

Calculate the Legendre symbol (a/p).

See Planetmath (http://planetmath.org/encyclopedia/LegendreSymbol.html) or Mathworld
(http://mathworld.wolfram.com/LegendreSymbol.html) for more information.

LucasLehmer

LucasLehmer (p)

Test if 2p-1 is a Mersenne prime using the Lucas-Lehmer test. See alsoMersennePrimeExponents
andIsMersennePrimeExponent.

See Wikipedia (http://en.wikipedia.org/wiki/Lucas%E2%80%93Lehmer_primality_test) or
Planetmath (http://planetmath.org/encyclopedia/LucasLhemer.html) or Mathworld
(http://mathworld.wolfram.com/Lucas-LehmerTest.html) for more information.

LucasNumber

LucasNumber (n)

Returns thenth Lucas number.

74



Chapter 11. List of GEL functions

See Wikipedia (http://en.wikipedia.org/wiki/Lucas_number) or Planetmath
(http://planetmath.org/encyclopedia/LucasNumbers.html) or Mathworld
(http://mathworld.wolfram.com/LucasNumber.html) for more information.

MaximalPrimePowerFactors

MaximalPrimePowerFactors (n)

Return all maximal prime power factors of a number.

MersennePrimeExponents

MersennePrimeExponents

A vector of known Mersenne prime exponents, that is a list of positive integersp such that 2p-1 is a
prime. See alsoIsMersennePrimeExponentandLucasLehmer.

See Wikipedia (http://en.wikipedia.org/wiki/Mersenne_prime), Planetmath
(http://planetmath.org/encyclopedia/MersenneNumbers.html), Mathworld
(http://mathworld.wolfram.com/MersennePrime.html) orGIMPS (http://www.mersenne.org/) for
more information.

MillerRabinTest

MillerRabinTest (n,reps)

Use the Miller-Rabin primality test onn, reps number of times. The probability of false positive is
(1/4)^reps. It is probably usually better to useIsPrime since that is faster and better on smaller
integers.

See Wikipedia (http://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test) or
Planetmath (http://planetmath.org/encyclopedia/MillerRabinPrimeTest.html) or Mathworld
(http://mathworld.wolfram.com/Rabin-MillerStrongPseudoprimeTest.html) for more information.

MillerRabinTestSure

MillerRabinTestSure (n)

Use the Miller-Rabin primality test onn with enough bases that assuming the Generalized Reimann
Hypothesis the result is deterministic.

75



Chapter 11. List of GEL functions

See Wikipedia (http://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test) or
Planetmath (http://planetmath.org/encyclopedia/MillerRabinPrimeTest.html) or Mathworld
(http://mathworld.wolfram.com/Rabin-MillerStrongPseudoprimeTest.html) for more information.

ModInvert

ModInvert (n,m)

Returns inverse of n mod m.

See Mathworld (http://mathworld.wolfram.com/ModularInverse.html) for more information.

MoebiusMu

MoebiusMu (n)

Return the Moebius mu function evaluated inn. That is, it returns 0 ifn is not a product of distinct
primes and(-1)^k if it is a product ofk distinct primes.

See Planetmath (http://planetmath.org/encyclopedia/MoebiusFunction.html) or Mathworld
(http://mathworld.wolfram.com/MoebiusFunction.html)for more information.

NextPrime

NextPrime (n)

Returns the least prime greater thann. Negatives of primes are considered prime and so to get the
previous prime you can use-NextPrime(-n).

This function uses the GMP’smpz_nextprime which in turn uses the probabilistic Miller-Rabin
test (See alsoMillerRabinTest). The probability of false positive is not tunable, but is low enough
for all practical purposes.

See Planetmath (http://planetmath.org/encyclopedia/PrimeNumber.html) or Mathworld
(http://mathworld.wolfram.com/PrimeNumber.html) for more information.

PadicValuation

PadicValuation (n,p)

Returns the padic valuation (number of trailing zeros in basep).

76



Chapter 11. List of GEL functions

See Planetmath (http://planetmath.org/encyclopedia/PAdicValuation.html) for more information.

PowerMod

PowerMod (a,b,m)

Computea^b mod m. Theb’s power ofa modulom. It is not neccessary to use this function as it is
automatically used in modulo mode. Hencea^b mod m is just as fast.

Prime

Prime (n)

Aliases:prime

Return thenth prime (up to a limit).

See Planetmath (http://planetmath.org/encyclopedia/PrimeNumber.html) or Mathworld
(http://mathworld.wolfram.com/PrimeNumber.html) for more information.

PrimeFactors

PrimeFactors (n)

Return all prime factors of a number as a vector.

See Mathworld (http://mathworld.wolfram.com/PrimeFactor.html) for more information.

PseudoprimeTest

PseudoprimeTest (n,b)

Pseudoprime test, returns true if and only ifb^(n-1) == 1 mod n

See Planetmath (http://planetmath.org/encyclopedia/Pseudoprime.html) or Mathworld
(http://mathworld.wolfram.com/Pseudoprime.html) for more information.

RemoveFactor

RemoveFactor (n,m)

77



Chapter 11. List of GEL functions

Removes all instances of the factorm from the numbern. That is divides by the largest power ofm,
that dividesn.

See Planetmath (http://planetmath.org/encyclopedia/Divisibility.html) or Mathworld
(http://mathworld.wolfram.com/Factor.html) for more information.

SilverPohligHellmanWithFactorization

SilverPohligHellmanWithFactorization (n,b,q,f)

Find discrete log ofn baseb in F
q
, the finite group of orderq, whereq is a prime using the

Silver-Pohlig-Hellman algoritm, givenf being the factorization ofq-1.

SqrtModPrime

SqrtModPrime (n,p)

Find square root ofn modulop (wherep is a prime). Null is returned if not a quadratic residue.

See Planetmath (http://planetmath.org/encyclopedia/QuadraticResidue.html) or Mathworld
(http://mathworld.wolfram.com/QuadraticResidue.html) for more information.

StrongPseudoprimeTest

StrongPseudoprimeTest (n,b)

Run the strong pseudoprime test baseb onn.

See Planetmath (http://planetmath.org/encyclopedia/StrongPseudoprime.html) or Mathworld
(http://mathworld.wolfram.com/StrongPseudoprime.html) for more information.

gcd

gcd (a,args...)

Aliases:GCD

Greatest common divisor of integers. You can enter as many integers in the argument list, or you
can give a vector or a matrix of integers. If you give more thanone matrix of the same size then
GCD is done element by element.

78



Chapter 11. List of GEL functions

See Planetmath (http://planetmath.org/encyclopedia/GreatestCommonDivisor.html) or Mathworld
(http://mathworld.wolfram.com/GreatestCommonDivisor.html) for more information.

lcm

lcm (a,args...)

Aliases:LCM

Least common multiplier of integers. You can enter as many integers in the argument list, or you
can give a vector or a matrix of integers. If you give more thanone matrix of the same size then
LCM is done element by element.

See Planetmath (http://planetmath.org/encyclopedia/LeastCommonMultiple.html) or Mathworld
(http://mathworld.wolfram.com/LeastCommonMultiple.html) for more information.

11.8. Matrix Manipulation

ApplyOverMatrix

ApplyOverMatrix (a,func)

Apply a function over all entries of a matrix and return a matrix of the results.

ApplyOverMatrix2

ApplyOverMatrix2 (a,b,func)

Apply a function over all entries of 2 matrices (or 1 value and1 matrix) and return a matrix of the
results.

ColumnsOf

ColumnsOf (M)

Gets the columns of a matrix as a horizontal vector.

ComplementSubmatrix

ComplementSubmatrix (m,r,c)

79



Chapter 11. List of GEL functions

Remove column(s) and row(s) from a matrix.

CompoundMatrix

CompoundMatrix (k,A)

Calculate the kth compund matrix of A.

CountZeroColumns

CountZeroColumns (M)

Count the number of zero columns in a matrix. For example Onceyou column reduce a matrix you
can use this to find the nullity. Seecref andNullity.

DeleteColumn

DeleteColumn (M,col)

Delete a column of a matrix.

DeleteRow

DeleteRow (M,row)

Delete a row of a matrix.

DiagonalOf

DiagonalOf (M)

Gets the diagonal entries of a matrix as a column vector.

See Wikipedia (http://en.wikipedia.org/wiki/Diagonal_of_a_matrix#Matrices) for more
information.

DotProduct

DotProduct (u,v)

Get the dot product of two vectors. The vectors must be of the same size. No conjugates are taken so
this is a bilinear form even if working over the complex numbers.

80



Chapter 11. List of GEL functions

See Planetmath (http://planetmath.org/encyclopedia/DotProduct.html) for more information.

ExpandMatrix

ExpandMatrix (M)

Expands a matrix just like we do on unquoted matrix input. That is we expand any internal matrices
as blocks. This is a way to construct matrices out of smaller ones and this is normally done
automatically on input unless the matrix is quoted.

HermitianProduct

HermitianProduct (u,v)

Aliases:InnerProduct

Get the hermitian product of two vectors. The vectors must beof the same size. This is a
sesquilinear form using the identity matrix.

See Mathworld (http://mathworld.wolfram.com/HermitianInnerProduct.html) for more information.

I

I (n)

Aliases:eye

Return an identity matrix of a given size, that isn by n. If n is zero, returns null.

See Planetmath (http://planetmath.org/encyclopedia/IdentityMatrix.html) for more information.

IndexComplement

IndexComplement (vec,msize)

Return the index complement of a vector of indexes. Everything is one based. For example for
vector[2,3] and size5, we return[1,4,5]. If msize is 0, we always return null.

IsDiagonal

IsDiagonal (M)

81



Chapter 11. List of GEL functions

Is a matrix diagonal.

See Wikipedia (http://en.wikipedia.org/wiki/Diagonal_matrix) or Planetmath
(http://planetmath.org/encyclopedia/DiagonalMatrix.html) for more information.

IsIdentity

IsIdentity (x)

Check if a matrix is the identity matrix. Automatically returnsfalse if the matrix is not square.
Also works on numbers, in which case it is equivalent tox==1. Whenx is null (we could think of
that as a 0 by 0 matrix), no error is generated andfalse is returned.

IsLowerTriangular

IsLowerTriangular (M)

Is a matrix lower triangular. That is, are all the entries below the diagonal zero.

IsMatrixInteger

IsMatrixInteger (M)

Check if a matrix is a matrix of an integers (non-complex).

IsMatrixNonnegative

IsMatrixNonnegative (M)

Check if a matrix is nonnegative, that is if each element is nonnegative. Do not confuse positive
matrices with positive semi-definite matrices.

See Wikipedia (http://en.wikipedia.org/wiki/Positive_matrix) for more information.

IsMatrixPositive

IsMatrixPositive (M)

Check if a matrix is positive, that is if each element is positive (and hence real). In particular, no
element is 0. Do not confuse positive matrices with positivedefinite matrices.

See Wikipedia (http://en.wikipedia.org/wiki/Positive_matrix) for more information.

82



Chapter 11. List of GEL functions

IsMatrixRational

IsMatrixRational (M)

Check if a matrix is a matrix of rational (non-complex) numbers.

IsMatrixReal

IsMatrixReal (M)

Check if a matrix is a matrix of real (non-complex) numbers.

IsMatrixSquare

IsMatrixSquare (M)

Check if a matrix is square, that is its width is equal to its height.

IsUpperTriangular

IsUpperTriangular (M)

Is a matrix upper triangular? That is, a matrix is upper triangular if all all the entries below the
diagonal are zero.

IsValueOnly

IsValueOnly (M)

Check if a matrix is a matrix of numbers only. Many internal functions make this check. Values can
be any number including complex numbers.

IsVector

IsVector (v)

Is argument a horizontal or a vertical vector. Genius does not distinguish between a matrix and a
vector and a vector is just a 1 byn or n by 1 matrix.

IsZero

IsZero (x)

83



Chapter 11. List of GEL functions

Check if a matrix is composed of all zeros. Also works on numbers, in which case it is equivalent to
x==0. Whenx is null (we could think of that as a 0 by 0 matrix), no error is generated andtrue is
returned as the condition is vacuous.

LowerTriangular

LowerTriangular (M)

Returns a copy of the matrixM with all the entries above the diagonal set to zero.

MakeDiagonal

MakeDiagonal (v,arg...)

Aliases:diag

Make diagonal matrix from a vector.

See Wikipedia (http://en.wikipedia.org/wiki/Diagonal_matrix) or Planetmath
(http://planetmath.org/encyclopedia/DiagonalMatrix.html) for more information.

MakeVector

MakeVector (A)

Make column vector out of matrix by putting columns above each other. Returns null when given
null.

MatrixProduct

MatrixProduct (A)

Calculate the product of all elements in a matrix or vector. That is we multiply all the elements and
return a number that is the product of all the elements.

MatrixSum

MatrixSum (A)

Calculate the sum of all elements in a matrix or vecgtor. Thatis we add all the elements and return a
number that is the sum of all the elements.

84



Chapter 11. List of GEL functions

MatrixSumSquares

MatrixSumSquares (A)

Calculate the sum of squares of all elements in a matrix or vector.

OuterProduct

OuterProduct (u,v)

Get the outer product of two vectors. That is, suppose thatu andv are vertical vectors, then the
outer product isv * u.’.

ReverseVector

ReverseVector (v)

Reverse elements in a vector.

RowSum

RowSum (m)

Calculate sum of each row in a matrix and return a vertical vector with the result.

RowSumSquares

RowSumSquares (m)

Calculate sum of squares of each row in a matrix.

RowsOf

RowsOf (M)

Gets the rows of a matrix as a vertical vector. Each element ofthe vector is a horizontal vector
which is the corresponding row ofM. This function is useful if you wish to loop over the rows of a
matrix. For example, asfor r in RowsOf(M) do something(r).

SetMatrixSize

SetMatrixSize (M,rows,columns)

85



Chapter 11. List of GEL functions

Make new matrix of given size from old one. That is, a new matrix will be returned to which the old
one is copied. Entries that don’t fit are clipped and extra space is filled with zeros. ifrows or
columns are zero then null is returned.

SortVector

SortVector (v)

Sort vector elements in an increasing order.

StripZeroColumns

StripZeroColumns (M)

Removes any all-zero columns ofM.

StripZeroRows

StripZeroRows (M)

Removes any all-zero rows ofM.

Submatrix

Submatrix (m,r,c)

Return column(s) and row(s) from a matrix. This is just equivalent tom@(r,c). r andc should be
vectors of rows and columns (or single numbers if only one rowor column is needed).

SwapRows

SwapRows (m,row1,row2)

Swap two rows in a matrix.

UpperTriangular

UpperTriangular (M)

Returns a copy of the matrixM with all the entries below the diagonal set to zero.

86



Chapter 11. List of GEL functions

columns

columns (M)

Get the number of columns of a matrix.

elements

elements (M)

Get the total number of elements of a matrix. This is the number of columns times the number of
rows.

ones

ones (rows,columns...)

Make an matrix of all ones (or a row vector if only one argumentis given). Returns null if either
rows or columns are zero.

rows

rows (M)

Get the number of rows of a matrix.

zeros

zeros (rows,columns...)

Make a matrix of all zeros (or a row vector if only one argumentis given). Returns null if either
rows or columns are zero.

11.9. Linear Algebra

AuxilliaryUnitMatrix

AuxilliaryUnitMatrix (n)

Get the auxilliary unit matrix of sizen. This is a square matrix matrix with that is all zero except the
superdiagonal being all ones. It is the Jordan block matrix of one zero eigenvalue.

87



Chapter 11. List of GEL functions

See Planetmath (http://planetmath.org/encyclopedia/JordanCanonicalFormTheorem.html) or
Mathworld (http://mathworld.wolfram.com/JordanBlock.html) for more information on Jordan
Cannonical Form.

BilinearForm

BilinearForm (v,A,w)

Evaluate (v,w) with respect to the bilinear form given by thematrix A.

BilinearFormFunction

BilinearFormFunction (A)

Return a function that evaluates two vectors with respect tothe bilinear form given by A.

CharacteristicPolynomial

CharacteristicPolynomial (M)

Aliases:CharPoly

Get the characteristic polynomial as a vector. That is, return the coefficients of the polynomial
starting with the constant term. This is the polynomial defined bydet(M-xI). The roots of this
polynomial are the eigenvalues ofM. See alsoCharacteristicPolynomialFunction.

See Planetmath (http://planetmath.org/encyclopedia/CharacteristicEquation.html) for more
information.

CharacteristicPolynomialFunction

CharacteristicPolynomialFunction (M)

Get the characteristic polynomial as a function. This is thepolynomial defined bydet(M-xI). The
roots of this polynomial are the eigenvalues ofM. See alsoCharacteristicPolynomial.

See Planetmath (http://planetmath.org/encyclopedia/CharacteristicEquation.html) for more
information.

ColumnSpace

ColumnSpace (M)

88



Chapter 11. List of GEL functions

Get a basis matrix for the columnspace of a matrix. That is, return a matrix whose columns are the
basis for the column space ofM. That is the space spanned by the columns ofM.

CommutationMatrix

CommutationMatrix (m, n)

Return the commutation matrix K(m,n) which is the unique m*nby m*n matrix such that K(m,n) *
MakeVector(A) = MakeVector(A.’) for all m by n matrices A.

CompanionMatrix

CompanionMatrix (p)

Companion matrix of a polynomial (as vector).

ConjugateTranspose

ConjugateTranspose (M)

Conjugate transpose of a matrix (adjoint). This is the same as the’ operator.

See Planetmath (http://planetmath.org/encyclopedia/ConjugateTranspose.html) for more
information.

Convolution

Convolution (a,b)

Aliases:convol

Calculate convolution of two horizontal vectors.

ConvolutionVector

ConvolutionVector (a,b)

Calculate convolution of two horizontal vectors. Return result as a vector and not added together.

CrossProduct

CrossProduct (v,w)

89



Chapter 11. List of GEL functions

CrossProduct of two vectors in R3.

DeterminantalDivisorsInteger

DeterminantalDivisorsInteger (M)

Get the determinantal divisors of an integer matrix (not itscharacteristic).

DirectSum

DirectSum (M,N...)

Direct sum of matrices.

DirectSumMatrixVector

DirectSumMatrixVector (v)

Direct sum of a vector of matrices.

Eigenvalues

Eigenvalues (M)

Aliases:eig

Get the eigenvalues of a square matrix. Currently only worksfor matrices of size up to 4 by 4, or for
triangular matrices (for which the eigenvalues are on the diagonal).

See Wikipedia (http://en.wikipedia.org/wiki/Eigenvalue) or Planetmath
(http://planetmath.org/encyclopedia/Eigenvalue.html) or Mathworld
(http://mathworld.wolfram.com/Eigenvalue.html) for more information.

Eigenvectors

Eigenvectors (M)

Eigenvectors (M, &eigenvalues)

Eigenvectors (M, &eigenvalues, &multiplicities)

Get the eigenvectors of a square matrix. Optionally get alsothe eigenvalues and their algebraic
multiplicities. Currently only works for matrices of size up to 2 by 2.

90



Chapter 11. List of GEL functions

See Wikipedia (http://en.wikipedia.org/wiki/Eigenvector) or Planetmath
(http://planetmath.org/encyclopedia/Eigenvector.html) or Mathworld
(http://mathworld.wolfram.com/Eigenvector.html) for more information.

GramSchmidt

GramSchmidt (v,B...)

Apply the Gram-Schmidt process (to the columns) with respect to inner product given byB. If B is
not given then the standard hermitian product is used.B can either be a sesquilinear function of two
arguments or it can be a matrix giving a sesquilinear form. The vectors will be made orthonormal
with respect toB.

See Planetmath (http://planetmath.org/encyclopedia/GramSchmidtOrthogonalization.html) for more
information.

HankelMatrix

HankelMatrix (c,r)

Hankel matrix.

HilbertMatrix

HilbertMatrix (n)

Hilbert matrix of ordern.

See Planetmath (http://planetmath.org/encyclopedia/HilbertMatrix.html) for more information.

Image

Image (T)

Get the image (columnspace) of a linear transform.

InfNorm

InfNorm (v)

Get the Inf Norm of a vector, sometimes called the sup norm or the max norm.

91



Chapter 11. List of GEL functions

InvariantFactorsInteger

InvariantFactorsInteger (M)

Get the invariant factors of a square integer matrix (not itscharacteristic).

InverseHilbertMatrix

InverseHilbertMatrix (n)

Inverse Hilbert matrix of ordern.

See Planetmath (http://planetmath.org/encyclopedia/HilbertMatrix.html) for more information.

IsHermitian

IsHermitian (M)

Is a matrix hermitian. That is, is it equal to its conjugate transpose.

See Planetmath (http://planetmath.org/encyclopedia/HermitianMatrix.html) for more information.

IsInSubspace

IsInSubspace (v,W)

Test if a vector is in a subspace.

IsInvertible

IsInvertible (n)

Is a matrix (or number) invertible (Integer matrix is invertible iff it’s invertible over the integers).

IsInvertibleField

IsInvertibleField (n)

Is a matrix (or number) invertible over a field.

92



Chapter 11. List of GEL functions

IsNormal

IsNormal (M)

Is M a normal matrix. That is, doesM*M’ == M’*M.

See Planetmath (http://planetmath.org/encyclopedia/NormalMatrix.html) or Mathworld
(http://mathworld.wolfram.com/NormalMatrix.html) formore information.

IsPositiveDefinite

IsPositiveDefinite (M)

Is M a hermitian positive definite matrix. That is ifHermitianProduct(M*v,v) is always strictly
positive for any vectorv. M must be square and hermitian to be positive definite. The check that is
performed is that every principal submatrix has a nonnegative determinant. (SeeHermitianProduct)

Note that some authors (for example Mathworld) do not require thatM be hermitian, and then the
condition is on the real part of the inner product, but we do not take this view. If you wish to perform
this check, just check the hermitian part of the matrixM as follows:IsPositiveDefinite(M+M’).

See Planetmath (http://planetmath.org/encyclopedia/PositiveDefinite.html) or Mathworld
(http://mathworld.wolfram.com/PositiveDefiniteMatrix.html) for more information.

IsPositiveSemidefinite

IsPositiveSemidefinite (M)

Is M a hermitian positive semidefinite matrix. That is ifHermitianProduct(M*v,v) is always
nonnegative for any vectorv. M must be square and hermitian to be positive semidefinite. Thecheck
that is performed is that every principal submatrix has a nonnegative determinant. (See
HermitianProduct)

Note that some authors do not require thatM be hermitian, and then the condition is on the real part
of the inner product, but we do not take this view. If you wish to perform this check, just check the
hermitian part of the matrixM as follows:IsPositiveSemidefinite(M+M’).

See Planetmath (http://planetmath.org/encyclopedia/PositiveSemidefinite.html) or Mathworld
(http://mathworld.wolfram.com/PositiveSemidefiniteMatrix.html) for more information.

IsSkewHermitian

IsSkewHermitian (M)

93



Chapter 11. List of GEL functions

Is a matrix skew-hermitian. That is, is the conjugate transpose equal to negative of the matrix.

See Planetmath (http://planetmath.org/encyclopedia/SkewHermitianMatrix.html) for more
information.

IsUnitary

IsUnitary (M)

Is a matrix unitary? That is, doesM’*M andM*M’ equal the identity.

See Planetmath (http://planetmath.org/encyclopedia/UnitaryTransformation.html) or Mathworld
(http://mathworld.wolfram.com/UnitaryMatrix.html) for more information.

JordanBlock

JordanBlock (n,lambda)

Aliases:J

Get the Jordan block corresponding to the eigenvaluelambda with multiplicity n.

See Planetmath (http://planetmath.org/encyclopedia/JordanCanonicalFormTheorem.html) or
Mathworld (http://mathworld.wolfram.com/JordanBlock.html) for more information.

Kernel

Kernel (T)

Get the kernel (nullspace) of a linear transform.

(SeeNullSpace)

LUDecomposition

LUDecomposition (A, L, U)

Get the LU decomposition ofA and store the result in theL andU which should be references. It
returns true if successful. For example suppose that A is a square matrix, then after running:

genius> LUDecomposition(A,&L,&U)

You will have the lower matrix stored in a variable calledL and the upper matrix in a variable called
U.

94



Chapter 11. List of GEL functions

This is the LU decomposition of a matrix aka Crout and/or Cholesky reduction. (ISBN
0-201-11577-8 pp.99-103) The upper triangular matrix features a diagonal of values 1 (one). This is
not Doolittle’s Method which features the 1’s diagonal on the lower matrix.

Not all matrices have LU decompositions, for example[0,1;1,0] does not and this function
returnsfalse in this case and setsL andU to null.

See Planetmath (http://planetmath.org/encyclopedia/LUDecomposition.html) or Mathworld
(http://mathworld.wolfram.com/LUDecomposition.html)for more information.

Minor

Minor (M,i,j)

Get thei-j minor of a matrix.

See Planetmath (http://planetmath.org/encyclopedia/Minor.html) for more information.

NonPivotColumns

NonPivotColumns (M)

Return the columns that are not the pivot columns of a matrix.

Norm

Norm (v,p...)

Aliases:norm

Get the p Norm (or 2 Norm if no p is supplied) of a vector.

NullSpace

NullSpace (T)

Get the nullspace of a matrix. That is the kernel of the linearmapping that the matrix represents.
This is returned as a matrix whose column space is the nullspace ofT.

See Planetmath (http://planetmath.org/encyclopedia/Nullspace.html) for more information.

95



Chapter 11. List of GEL functions

Nullity

Nullity (M)

Aliases:nullity

Get the nullity of a matrix. That is, return the dimension of the nullspace; the dimension of the
kernel ofM.

See Planetmath (http://planetmath.org/encyclopedia/Nullity.html) for more information.

OrthogonalComplement

OrthogonalComplement (M)

Get the orthogonal complement of the columnspace.

PivotColumns

PivotColumns (M)

Return pivot columns of a matrix, that is columns which have aleading 1 in row reduced form. Also
returns the row where they occur.

Projection

Projection (v,W,B...)

Projection of vectorv onto subspaceW with respect to inner product given byB. If B is not given
then the standard hermitian product is used.B can either be a sesquilinear function of two arguments
or it can be a matrix giving a sesquilinear form.

QRDecomposition

QRDecomposition (A, Q)

Get the QR decomposition of a square matrixA, returns the upper triangular matrixR and setsQ to
the orthogonal (unitary) matrix.Q should be a reference or null if you don’t want any return. For
example:

genius> R = QRDecomposition(A,&Q)

You will have the upper triangular matrix stored in a variable calledR and the orthogonal (unitary)
matrix stored inQ.

96



Chapter 11. List of GEL functions

See Planetmath (http://planetmath.org/encyclopedia/QRDecomposition.html) or Mathworld
(http://mathworld.wolfram.com/QRDecomposition.html)for more information.

RayleighQuotient

RayleighQuotient (A,x)

Return the Rayleigh quotient (also called the Rayleigh-Ritz quotient or ratio) of a matrix and a
vector.

See Planetmath (http://planetmath.org/encyclopedia/RayleighQuotient.html) for more information.

RayleighQuotientIteration

RayleighQuotientIteration (A,x,epsilon,maxiter,vecref)

Find eigenvalues ofA using the Rayleigh quotient iteration method.x is a guess at a eigenvector and
could be random. It should have nonzero imaginary part if it will have any chance at finding
complex eigenvalues. The code will run at mostmaxiter iterations and return null if we cannot get
within an error ofepsilon. vecref should either be null or a reference to a variable where the
eigenvector should be stored.

See Planetmath (http://planetmath.org/encyclopedia/RayleighQuotient.html) for more information
on Rayleigh quotient.

Rank

Rank (M)

Aliases:rank

Get the rank of a matrix.

See Planetmath (http://planetmath.org/encyclopedia/SylvestersLaw.html) for more information.

RosserMatrix

RosserMatrix ()

Rosser matrix, a classic symmetric eigenvalue test problem.

97



Chapter 11. List of GEL functions

Rotation2D

Rotation2D (angle)

Aliases:RotationMatrix

Return the matrix corresponding to rotation around origin in R2.

Rotation3DX

Rotation3DX (angle)

Return the matrix corresponding to rotation around origin in R3 about the x-axis.

Rotation3DY

Rotation3DY (angle)

Return the matrix corresponding to rotation around origin in R3 about the y-axis.

Rotation3DZ

Rotation3DZ (angle)

Return the matrix corresponding to rotation around origin in R3 about the z-axis.

RowSpace

RowSpace (M)

Get a basis matrix for the rowspace of a matrix.

SesquilinearForm

SesquilinearForm (v,A,w)

Evaluate (v,w) with respect to the sesquilinear form given by the matrix A.

SesquilinearFormFunction

SesquilinearFormFunction (A)

Return a function that evaluates two vectors with respect tothe sesquilinear form given by A.

98



Chapter 11. List of GEL functions

SmithNormalFormField

SmithNormalFormField (A)

Smith Normal Form for fields (will end up with 1’s on the diagonal).

SmithNormalFormInteger

SmithNormalFormInteger (M)

Smith Normal Form for square integer matrices (not its characteristic).

SolveLinearSystem

SolveLinearSystem (M,V,args...)

Solve linear system Mx=V, return solution V if there is a unique solution, null otherwise. Extra two
reference parameters can optionally be used to get the reduced M and V.

ToeplitzMatrix

ToeplitzMatrix (c, r...)

Return the Toeplitz matrix constructed given the first column c and (optionally) the first row r. If
only the column c is given then it is conjugated and the nonconjugated version is used for the first
row to give a Hermitian matrix (if the first element is real of course).

See Planetmath (http://planetmath.org/encyclopedia/ToeplitzMatrix.html) for more information.

Trace

Trace (M)

Aliases:trace

Calculate the trace of a matrix. That is the sum of the diagonal elements.

See Planetmath (http://planetmath.org/encyclopedia/Trace.html) for more information.

99



Chapter 11. List of GEL functions

Transpose

Transpose (M)

Transpose of a matrix. This is the same as the.’ operator.

See Planetmath (http://planetmath.org/encyclopedia/Transpose.html) for more information.

VandermondeMatrix

VandermondeMatrix (v)

Aliases:vander

Return the Vandermonde matrix.

VectorAngle

VectorAngle (v,w,B...)

The angle of two vectors with respect to inner product given by B. If B is not given then the standard
hermitian product is used.B can either be a sesquilinear function of two arguments or it can be a
matrix giving a sesquilinear form.

VectorSpaceDirectSum

VectorSpaceDirectSum (M,N)

The direct sum of the vector spaces M and N.

VectorSubspaceIntersection

VectorSubspaceIntersection (M,N)

Intersection of the subspaces given by M and N.

VectorSubspaceSum

VectorSubspaceSum (M,N)

The sum of the vector spaces M and N, that is {w | w=m+n, m in M, n in N}.

100



Chapter 11. List of GEL functions

adj

adj (m)

Aliases:Adjugate

Get the classical adjoint (adjugate) of a matrix.

cref

cref (M)

Aliases:CREF ColumnReducedEchelonForm

Compute the Column Reduced Echelon Form.

det

det (M)

Aliases:Determinant

Get the determinant of a matrix.

See Wikipedia (http://en.wikipedia.org/wiki/Determinant) or Planetmath
(http://planetmath.org/encyclopedia/Determinant2.html) for more information.

ref

ref (M)

Aliases:REF RowEchelonForm

Get the row echelon form of a matrix. That is, apply gaussian elimination but not backaddition toM.
The pivot rows are divided to make all pivots 1.

See Wikipedia (http://en.wikipedia.org/wiki/Row_echelon_form) or Planetmath
(http://planetmath.org/encyclopedia/RowEchelonForm.html) for more information.

rref

rref (M)

101



Chapter 11. List of GEL functions

Aliases:RREF ReducedRowEchelonForm

Get the reduced row echelon form of a matrix. That is, apply gaussian elimination together with
backaddition toM.

See Wikipedia (http://en.wikipedia.org/wiki/Reduced_row_echelon_form) or Planetmath
(http://planetmath.org/encyclopedia/ReducedRowEchelonForm.html) for more information.

11.10. Combinatorics

Catalan

Catalan (n)

Getn’th catalan number.

See Planetmath (http://planetmath.org/encyclopedia/CatalanNumbers.html) for more information.

Combinations

Combinations (k,n)

Get all combinations of k numbers from 1 to n as a vector of vectors. (See alsoNextCombination)

DoubleFactorial

DoubleFactorial (n)

Double factorial:n(n-2)(n-4)...

See Planetmath (http://planetmath.org/encyclopedia/DoubleFactorial.html) for more information.

Factorial

Factorial (n)

Factorial:n(n-1)(n-2)...

See Planetmath (http://planetmath.org/encyclopedia/Factorial.html) for more information.

102



Chapter 11. List of GEL functions

FallingFactorial

FallingFactorial (n,k)

Falling factorial:(n)_k = n(n-1)...(n-(k-1))

See Planetmath (http://planetmath.org/encyclopedia/FallingFactorial.html) for more information.

Fibonacci

Fibonacci (x)

Aliases:fib

Calculatenth fibonacci number. That is the number defined recursively byFibonacci(n) =

Fibonacci(n-1) + Fibonacci(n-2) andFibonacci(1) = Fibonacci(2) = 1.

See Wikipedia (http://en.wikipedia.org/wiki/Fibonacci_number) or Planetmath
(http://planetmath.org/encyclopedia/FibonacciSequence.html) or Mathworld
(http://mathworld.wolfram.com/FibonacciNumber.html)for more information.

FrobeniusNumber

FrobeniusNumber (v,arg...)

Calculate the Frobenius number. That is calculate smallestnumber that cannot be given as a
nonnegative integer linear combination of a given vector ofnonnegative integers. The vector can be
given as separate numbers or a single vector. All the numbersgiven should have GCD of 1.

See Mathworld (http://mathworld.wolfram.com/FrobeniusNumber.html) for more information.

GaloisMatrix

GaloisMatrix (combining_rule)

Galois matrix given a linear combining rule (a_1*x_+...+a_n*x_n=x_(n+1)).

GreedyAlgorithm

FrobeniusNumber (n,v)

103



Chapter 11. List of GEL functions

Find the vectorc of nonnegative integers such that taking the dot product with v is equal to n. If not
possible returns null.v should be given sorted in increasing order and should consist of nonnegative
integers.

See Mathworld (http://mathworld.wolfram.com/GreedyAlgorithm.html) for more information.

HarmonicNumber

HarmonicNumber (n,r)

Aliases:HarmonicH

Harmonic Number, then’th harmonic number of orderr.

Hofstadter

Hofstadter (n)

Hofstadter’s function q(n) defined by q(1)=1, q(2)=1, q(n)=q(n-q(n-1))+q(n-q(n-2)).

LinearRecursiveSequence

LinearRecursiveSequence (seed_values,combining_rule,n)

Compute linear recursive sequence using galois stepping.

Multinomial

Multinomial (v,arg...)

Calculate multinomial coefficients. Takes a vector ofk nonnegative integers and computes the
multinomial coefficient. This corresponds to the coefficient in the homogeneous polynomial ink
variables with the corresponding powers.

The formula forMultinomial(a,b,c) can be written as:

(a+b+c)! / (a!b!c!)

In other words, if we would have only two elements, thenMultinomial(a,b) is the same thing as
Binomial(a+b,a) or Binomial(a+b,b).

See Planetmath (http://planetmath.org/encyclopedia/MultinomialTheorem.html), Mathworld
(http://mathworld.wolfram.com/MultinomialCoefficient.html), or Wikipedia
(http://en.wikipedia.org/wiki/Multinomial_theorem) for more information.

104



Chapter 11. List of GEL functions

NextCombination

NextCombination (v,n)

Get combination that would come after v in call to combinations, first combination should be
[1:k]. This function is useful if you have many combinations to go through and you don’t want to
waste memory to store them all.

For example with Combination you would normally write a looplike:

for n in Combinations (4,6) do (

SomeFunction (n)

);

But with NextCombination you would write something like:

n:=[1:4];

do (

SomeFunction (n)

) while not IsNull(n:=NextCombination(n,6));

See alsoCombinations.

Pascal

Pascal (i)

Get the Pascal’s triangle as a matrix. This will return ani+1 byi+1 lower diagonal matrix which is
the Pascal’s triangle afteri iterations.

See Planetmath (http://planetmath.org/encyclopedia/PascalsTriangle.html) for more information.

Permutations

Permutations (k,n)

Get all permutations ofk numbers from 1 ton as a vector of vectors.

See Mathworld (http://mathworld.wolfram.com/Permutation.html) or Wikipedia
(http://en.wikipedia.org/wiki/Permutation) for more information.

RisingFactorial

RisingFactorial (n,k)

Aliases:Pochhammer

105



Chapter 11. List of GEL functions

(Pochhammer) Rising factorial: (n)_k = n(n+1)...(n+(k-1)).

See Planetmath (http://planetmath.org/encyclopedia/RisingFactorial.html) for more information.

StirlingNumberFirst

StirlingNumberFirst (n,m)

Aliases:StirlingS1

Stirling number of the first kind.

See Planetmath (http://planetmath.org/encyclopedia/StirlingNumbersOfTheFirstKind.html) or
Mathworld (http://mathworld.wolfram.com/StirlingNumberoftheFirstKind.html) for more
information.

StirlingNumberSecond

StirlingNumberSecond (n,m)

Aliases:StirlingS2

Stirling number of the second kind.

See Planetmath (http://planetmath.org/encyclopedia/StirlingNumbersSecondKind.html) or
Mathworld (http://mathworld.wolfram.com/StirlingNumberoftheSecondKind.html) for more
information.

Subfactorial

Subfactorial (n)

Subfactorial: n! times sum_{k=1}^n (-1)^k/k!.

Triangular

Triangular (nth)

Calculate then’th triangular number.

See Planetmath (http://planetmath.org/encyclopedia/TriangularNumbers.html) for more
information.

106



Chapter 11. List of GEL functions

nCr

nCr (n,r)

Aliases:Binomial

Calculate combinations, that is, the binomial coefficient.n can be any real number.

See Planetmath (http://planetmath.org/encyclopedia/Choose.html) for more information.

nPr

nPr (n,r)

Calculate the number of permutations of sizerof numbers from 1 ton.

See Mathworld (http://mathworld.wolfram.com/Permutation.html) or Wikipedia
(http://en.wikipedia.org/wiki/Permutation) for more information.

11.11. Calculus

CompositeSimpsonsRule

CompositeSimpsonsRule (f,a,b,n)

Integration of f by Composite Simpson’s Rule on the interval[a,b] with n subintervals with error of
max(f””)*h^4*(b-a)/180, note that n should be even.

See Planetmath (http://planetmath.org/encyclopedia/SimpsonsRule.html) for more information.

CompositeSimpsonsRuleTolerance

CompositeSimpsonsRuleTolerance (f,a,b,FourthDerivativeBound,Tolerance)

Integration of f by Composite Simpson’s Rule on the interval[a,b] with the number of steps
calculated by the fourth derivative bound and the desired tolerance.

See Planetmath (http://planetmath.org/encyclopedia/SimpsonsRule.html) for more information.

107



Chapter 11. List of GEL functions

Derivative

Derivative (f,x0)

Attempt to calculate derivative by trying first symbolically and then numerically.

EvenPeriodicExtension

EvenPeriodicExtension (f,L)

Return a function which is even periodic extension off with half periodL. That is a function
defined on the interval[0,L] extended to be even on[-L,L] and then extended to be periodic with
period2*L.

See alsoOddPeriodicExtensionandPeriodicExtension.

FourierSeriesFunction

FourierSeriesFunction (a,b,L)

Return a function which is a Fourier series with the coefficients given by the vectorsa (sines) andb
(cosines). Note thata@(1) is the constant coefficient! That is,a@(n) refers to the term
cos(x*(n-1)*pi/L), whileb@(n) refers to the termsin(x*n*pi/L). Eithera or b can be
null.

See Wikipedia (http://en.wikipedia.org/wiki/Fourier_series) or Mathworld
(http://mathworld.wolfram.com/FourierSeries.html) for more information.

InfiniteProduct

InfiniteProduct (func,start,inc)

Try to calculate an infinite product for a single parameter function.

InfiniteProduct2

InfiniteProduct2 (func,arg,start,inc)

Try to calculate an infinite product for a double parameter function with func(arg,n).

InfiniteSum

InfiniteSum (func,start,inc)

108



Chapter 11. List of GEL functions

Try to calculate an infinite sum for a single parameter function.

InfiniteSum2

InfiniteSum2 (func,arg,start,inc)

Try to calculate an infinite sum for a double parameter function with func(arg,n).

IsContinuous

IsContinuous (f,x0)

Try and see if a real-valued function is continuous at x0 by calculating the limit there.

IsDifferentiable

IsDifferentiable (f,x0)

Test for differentiability by approximating the left and right limits and comparing.

LeftLimit

LeftLimit (f,x0)

Calculate the left limit of a real-valued function at x0.

Limit

Limit (f,x0)

Calculate the limit of a real-valued function at x0. Tries tocalculate both left and right limits.

MidpointRule

MidpointRule (f,a,b,n)

Integration by midpoint rule.

NumericalDerivative

NumericalDerivative (f,x0)

Aliases:NDerivative

109



Chapter 11. List of GEL functions

Attempt to calculate numerical derivative.

NumericalFourierSeriesCoefficients

NumericalFourierSeriesCoefficients (f,L,N)

Return a vector of vectors[a,b] wherea are the cosine coefficients andb are the sine coefficients
of the Fourier series off with half-periodL (that is defined on[-L,L] and extended periodically)
with coefficients up toNth harmonic computed numerically. The coefficients are computed by
numerical integration usingNumericalIntegral.

See Wikipedia (http://en.wikipedia.org/wiki/Fourier_series) or Mathworld
(http://mathworld.wolfram.com/FourierSeries.html) for more information.

NumericalFourierSeriesFunction

NumericalFourierSeriesFunction (f,L,N)

Return a function which is the Fourier series off with half-periodL (that is defined on[-L,L] and
extended periodically) with coefficients up toNth harmonic computed numerically. This is the
trigonometric real series composed of sines and cosines. The coefficients are computed by
numerical integration usingNumericalIntegral.

See Wikipedia (http://en.wikipedia.org/wiki/Fourier_series) or Mathworld
(http://mathworld.wolfram.com/FourierSeries.html) for more information.

NumericalFourierCosineSeriesCoefficients

NumericalFourierCosineSeriesCoefficients (f,L,N)

Return a vector of coefficients of the the cosine Fourier series off with half-periodL. That is, we
takef defined on[0,L] take the even periodic extension and compute the Fourier series, which
only has sine terms. The series is computed up to theNth harmonic. The coefficients are computed
by numerical integration usingNumericalIntegral. Note thata@(1) is the constant coefficient!
That is,a@(n) refers to the termcos(x*(n-1)*pi/L).

See Wikipedia (http://en.wikipedia.org/wiki/Fourier_series) or Mathworld
(http://mathworld.wolfram.com/FourierCosineSeries.html) for more information.

NumericalFourierCosineSeriesFunction

NumericalFourierCosineSeriesFunction (f,L,N)

110



Chapter 11. List of GEL functions

Return a function which is the cosine Fourier series off with half-periodL. That is, we takef
defined on[0,L] take the even periodic extension and compute the Fourier series, which only has
cosine terms. The series is computed up to theNth harmonic. The coefficients are computed by
numerical integration usingNumericalIntegral.

See Wikipedia (http://en.wikipedia.org/wiki/Fourier_series) or Mathworld
(http://mathworld.wolfram.com/FourierCosineSeries.html) for more information.

NumericalFourierSineSeriesCoefficients

NumericalFourierSineSeriesCoefficients (f,L,N)

Return a vector of coefficients of the the sine Fourier seriesof f with half-periodL. That is, we take
f defined on[0,L] take the odd periodic extension and compute the Fourier series, which only has
sine terms. The series is computed up to theNth harmonic. The coefficients are computed by
numerical integration usingNumericalIntegral.

See Wikipedia (http://en.wikipedia.org/wiki/Fourier_series) or Mathworld
(http://mathworld.wolfram.com/FourierSineSeries.html) for more information.

NumericalFourierSineSeriesFunction

NumericalFourierSineSeriesFunction (f,L,N)

Return a function which is the sine Fourier series off with half-periodL. That is, we takef defined
on[0,L] take the odd periodic extension and compute the Fourier series, which only has sine
terms. The series is computed up to theNth harmonic. The coefficients are computed by numerical
integration usingNumericalIntegral.

See Wikipedia (http://en.wikipedia.org/wiki/Fourier_series) or Mathworld
(http://mathworld.wolfram.com/FourierSineSeries.html) for more information.

NumericalIntegral

NumericalIntegral (f,a,b)

Integration by rule set in NumericalIntegralFunction of f from a to b using NumericalIntegralSteps
steps.

NumericalLeftDerivative

NumericalLeftDerivative (f,x0)

111



Chapter 11. List of GEL functions

Attempt to calculate numerical left derivative.

NumericalLimitAtInfinity

NumericalLimitAtInfinity (_f,step_fun,tolerance,successive_for_success,N)

Attempt to calculate the limit of f(step_fun(i)) as i goes from 1 to N.

NumericalRightDerivative

NumericalRightDerivative (f,x0)

Attempt to calculate numerical right derivative.

OddPeriodicExtension

OddPeriodicExtension (f,L)

Return a function which is odd periodic extension off with half periodL. That is a function defined
on the interval[0,L] extended to be odd on[-L,L] and then extended to be periodic with period
2*L.

See alsoEvenPeriodicExtensionandPeriodicExtension.

OneSidedFivePointFormula

OneSidedFivePointFormula (f,x0,h)

Compute one-sided derivative using five point formula.

OneSidedThreePointFormula

OneSidedThreePointFormula (f,x0,h)

Compute one-sided derivative using three-point formula.

PeriodicExtension

PeriodicExtension (f,a,b)

Return a function which is the periodic extension off defined on the interval[a,b] and has period
b-a.

112



Chapter 11. List of GEL functions

See alsoOddPeriodicExtensionandEvenPeriodicExtension.

RightLimit

RightLimit (f,x0)

Calculate the right limit of a real-valued function at x0.

TwoSidedFivePointFormula

TwoSidedFivePointFormula (f,x0,h)

Compute two-sided derivative using five-point formula.

TwoSidedThreePointFormula

TwoSidedThreePointFormula (f,x0,h)

Compute two-sided derivative using three-point formula.

11.12. Functions

Argument

Argument (z)

Aliases:Arg arg

argument (angle) of complex number.

DirichletKernel

DirichletKernel (n,t)

Dirichlet kernel of order n.

DiscreteDelta

DiscreteDelta (v)

Returns 1 iff all elements are zero.

113



Chapter 11. List of GEL functions

ErrorFunction

ErrorFunction (x)

Aliases:erf

The error function, 2/sqrt(pi) * int_0^x e^(-t^2) dt.

See Planetmath (http://planetmath.org/encyclopedia/ErrorFunction.html) for more information.

FejerKernel

FejerKernel (n,t)

Fejer kernel of ordern evaluated att

See Planetmath (http://planetmath.org/encyclopedia/FejerKernel.html) for more information.

GammaFunction

GammaFunction (x)

Aliases:Gamma

The Gamma function. Currently only implemented for real values.

See Planetmath (http://planetmath.org/encyclopedia/GammaFunction.html) for more information.

KroneckerDelta

KroneckerDelta (v)

Returns 1 iff all elements are equal.

MinimizeFunction

MinimizeFunction (func,x,incr)

Find the first value where f(x)=0.

114



Chapter 11. List of GEL functions

MoebiusDiskMapping

MoebiusDiskMapping (a,z)

Moebius mapping of the disk to itself mapping a to 0.

See Planetmath (http://planetmath.org/encyclopedia/MobiusTransformation.html) for more
information.

MoebiusMapping

MoebiusMapping (z,z2,z3,z4)

Moebius mapping using the cross ratio taking z2,z3,z4 to 1,0, and infinity respectively.

See Planetmath (http://planetmath.org/encyclopedia/MobiusTransformation.html) for more
information.

MoebiusMappingInftyToInfty

MoebiusMappingInftyToInfty (z,z2,z3)

Moebius mapping using the cross ratio taking infinity to infinity and z2,z3 to 1 and 0 respectively.

See Planetmath (http://planetmath.org/encyclopedia/MobiusTransformation.html) for more
information.

MoebiusMappingInftyToOne

MoebiusMappingInftyToOne (z,z3,z4)

Moebius mapping using the cross ratio taking infinity to 1 andz3,z4 to 0 and infinity respectively.

See Planetmath (http://planetmath.org/encyclopedia/MobiusTransformation.html) for more
information.

MoebiusMappingInftyToZero

MoebiusMappingInftyToZero (z,z2,z4)

Moebius mapping using the cross ratio taking infinity to 0 andz2,z4 to 1 and infinity respectively.

115



Chapter 11. List of GEL functions

See Planetmath (http://planetmath.org/encyclopedia/MobiusTransformation.html) for more
information.

PoissonKernel

PoissonKernel (r,sigma)

Poisson kernel on D(0,1) (not normalized to 1, that is integral of this is 2pi).

PoissonKernelRadius

PoissonKernelRadius (r,sigma)

Poisson kernel on D(0,R) (not normalized to 1).

RiemannZeta

RiemannZeta (x)

Aliases:zeta

The Riemann zeta function. Currently only implemented for real values.

See Planetmath (http://planetmath.org/encyclopedia/RiemannZetaFunction.html) for more
information.

UnitStep

UnitStep (x)

The unit step function is 0 for x<0, 1 otherwise. This is the integral of the Dirac Delta function.
Also called the Heaviside function.

See Wikipedia (http://en.wikipedia.org/wiki/Unit_step) for more information.

cis

cis (x)

Thecis function, that is the same ascos(x)+1i*sin(x)

116



Chapter 11. List of GEL functions

deg2rad

deg2rad (x)

Convert degrees to radians.

rad2deg

rad2deg (x)

Convert radians to degrees.

11.13. Equation Solving

CubicFormula

CubicFormula (p)

Compute roots of a cubic (degree 3) polynomial using the cubic formula. The polynomial should be
given as a vector of coefficients. That is4*x^3 + 2*x + 1 corresponds to the vector[1,2,0,4].
Returns a column vector of the three solutions. The first solution is always the real one as a cubic
always has one real solution.

See Planetmath (http://planetmath.org/encyclopedia/CubicFormula.html), Mathworld
(http://mathworld.wolfram.com/CubicFormula.html), orWikipedia
(http://en.wikipedia.org/wiki/Cubic_equation) for more information.

EulersMethod

EulersMethod (f,x0,y0,x1,n)

Use classical Euler’s method to numerically solve y’=f(x,y) for initial x0, y0 going tox1 with n

increments, returnsy atx1.

Systems can be solved by just havingy be a (column) vector everywhere. That is,y0 can be a
vector in which casef should take a numberx and a vector of the same size for the second
argument and should return a vector of the same size.

See Mathworld (http://mathworld.wolfram.com/EulerForwardMethod.html), or Wikipedia
(http://en.wikipedia.org/wiki/Eulers_method) for moreinformation.

117



Chapter 11. List of GEL functions

FindRootBisection

FindRootBisection (f,a,b,TOL,N)

Find root of a function using the bisection method.TOL is the desired tolerance andN is the limit on
the number of iterations to run, 0 means no limit. The function returns a vector
[success,value,iteration], wheresuccess is a boolean indicating success,value is the
last value computed, anditeration is the number of iterations done.

FindRootFalsePosition

FindRootFalsePosition (f,a,b,TOL,N)

Find root of a function using the method of false position.TOL is the desired tolerance andN is the
limit on the number of iterations to run, 0 means no limit. Thefunction returns a vector
[success,value,iteration], wheresuccess is a boolean indicating success,value is the
last value computed, anditeration is the number of iterations done.

FindRootMullersMethod

FindRootMullersMethod (f,x1,x2,x3,TOL,N)

Find root of a function using the Muller’s method.TOL is the desired tolerance andN is the limit on
the number of iterations to run, 0 means no limit. The function returns a vector
[success,value,iteration], wheresuccess is a boolean indicating success,value is the
last value computed, anditeration is the number of iterations done.

FindRootSecant

FindRootSecant (f,a,b,TOL,N)

Find root of a function using the secant method.TOL is the desired tolerance andN is the limit on
the number of iterations to run, 0 means no limit. The function returns a vector
[success,value,iteration], wheresuccess is a boolean indicating success,value is the
last value computed, anditeration is the number of iterations done.

PolynomialRoots

PolynomialRoots (p)

Compute roots of a polynomial (degrees 1 through 4) using oneof the formulas for such
polynomials. The polynomial should be given as a vector of coefficients. That is4*x^3 + 2*x +

1 corresponds to the vector[1,2,0,4]. Returns a column vector of the solutions.

The function callsQuadraticFormula, CubicFormula, andQuarticFormula.

118



Chapter 11. List of GEL functions

QuadraticFormula

QuadraticFormula (p)

Compute roots of a quadratic (degree 2) polynomial using thequadratic formula. The polynomial
should be given as a vector of coefficients. That is3*x^2 + 2*x + 1 corresponds to the vector
[1,2,3]. Returns a column vector of the two solutions.

See Planetmath (http://planetmath.org/encyclopedia/QuadraticFormula.html) or Mathworld
(http://mathworld.wolfram.com/QuadraticFormula.html) for more information.

QuarticFormula

QuarticFormula (p)

Compute roots of a quartic (degree 4) polynomial using the quartic formula. The polynomial should
be given as a vector of coefficients. That is5*x^4 + 2*x + 1 corresponds to the vector
[1,2,0,0,5]. Returns a column vector of the four solutions.

See Planetmath (http://planetmath.org/encyclopedia/QuarticFormula.html), Mathworld
(http://mathworld.wolfram.com/QuarticEquation.html), or Wikipedia
(http://en.wikipedia.org/wiki/Quartic_equation) for more information.

RungeKutta

RungeKutta (f,x0,y0,x1,n)

Use classical non-adaptive fourth order Runge-Kutta method to numerically solve y’=f(x,y) for
initial x0, y0 going tox1 with n increments, returnsy atx1.

Systems can be solved by just havingy be a (column) vector everywhere. That is,y0 can be a
vector in which casef should take a numberx and a vector of the same size for the second
argument and should return a vector of the same size.

See Mathworld (http://mathworld.wolfram.com/Runge-KuttaMethod.html), or Wikipedia
(http://en.wikipedia.org/wiki/Runge-Kutta_methods) for more information.

119



Chapter 11. List of GEL functions

11.14. Statistics

Average

Average (m)

Aliases:average Mean mean

Calculate average of an entire matrix.

See Mathworld (http://mathworld.wolfram.com/ArithmeticMean.html) for more information.

GaussDistribution

GaussDistribution (x,sigma)

Integral of the GaussFunction from 0 to x (area under the normal curve).

See Mathworld (http://mathworld.wolfram.com/NormalDistribution.html) for more information.

GaussFunction

GaussFunction (x,sigma)

The normalized Gauss distribution function (the normal curve).

See Mathworld (http://mathworld.wolfram.com/NormalDistribution.html) for more information.

Median

Median (m)

Aliases:median

Calculate median of an entire matrix.

See Mathworld (http://mathworld.wolfram.com/StatisticalMedian.html) for more information.

PopulationStandardDeviation

PopulationStandardDeviation (m)

120



Chapter 11. List of GEL functions

Aliases:stdevp

Calculate the population standard deviation of a whole matrix.

RowAverage

RowAverage (m)

Aliases:RowMean

Calculate average of each row in a matrix.

See Mathworld (http://mathworld.wolfram.com/ArithmeticMean.html) for more information.

RowMedian

RowMedian (m)

Calculate median of each row in a matrix and return a column vector of the medians.

See Mathworld (http://mathworld.wolfram.com/StatisticalMedian.html) for more information.

RowPopulationStandardDeviation

RowPopulationStandardDeviation (m)

Aliases:rowstdevp

Calculate the population standard deviations of rows of a matrix and return a vertical vector.

RowStandardDeviation

RowStandardDeviation (m)

Aliases:rowstdev

Calculate the standard deviations of rows of a matrix and return a vertical vector.

StandardDeviation

StandardDeviation (m)

121



Chapter 11. List of GEL functions

Aliases:stdev

Calculate the standard deviation of a whole matrix.

11.15. Polynomials

AddPoly

AddPoly (p1,p2)

Add two polynomials (vectors).

DividePoly

DividePoly (p,q,&r)

Divide two polynomials (as vectors) using long division. Returns the quotient of the two
polynomials. The optional argumentr is used to return the remainder. The remainder will have
lower degree thanq.

See Planetmath (http://planetmath.org/encyclopedia/PolynomialLongDivision.html) for more
information.

IsPoly

IsPoly (p)

Check if a vector is usable as a polynomial.

MultiplyPoly

MultiplyPoly (p1,p2)

Multiply two polynomials (as vectors).

NewtonsMethodPoly

NewtonsMethodPoly (poly,guess,epsilon,maxn)

Run newton’s method on a polynomial to attempt to find a root, returns after two successive values
are within epsilon or after maxn tries (then returns null).

122



Chapter 11. List of GEL functions

Poly2ndDerivative

Poly2ndDerivative (p)

Take second polynomial (as vector) derivative.

PolyDerivative

PolyDerivative (p)

Take polynomial (as vector) derivative.

PolyToFunction

PolyToFunction (p)

Make function out of a polynomial (as vector).

PolyToString

PolyToString (p,var...)

Make string out of a polynomial (as vector).

SubtractPoly

SubtractPoly (p1,p2)

Subtract two polynomials (as vectors).

TrimPoly

TrimPoly (p)

Trim zeros from a polynomial (as vector).

123



Chapter 11. List of GEL functions

11.16. Set Theory

Intersection

Intersection (X,Y)

Returns a set theoretic intersection of X and Y (X and Y are vectors pretending to be sets).

IsIn

IsIn (x,X)

Returns true if the element x is in the set X (where X is a vectorpretending to be a set).

IsSubset

IsSubset (X, Y)

Returns true if X is a subset of Y (X and Y are vectors pretending to be sets).

MakeSet

MakeSet (X)

Returns a vector where every element of X appears only once.

SetMinus

SetMinus (X,Y)

Returns a set theoretic difference X-Y (X and Y are vectors pretending to be sets).

Union

Union (X,Y)

Returns a set theoretic union of X and Y (X and Y are vectors pretending to be sets).

124



Chapter 11. List of GEL functions

11.17. Miscellaneous

ASCIIToString

ASCIIToString (vec)

Convert a vector of ASCII values to a string.

AlphabetToString

AlphabetToString (vec,alphabet)

Convert a vector of 0-based alphabet values (positions in the alphabet string) to a string.

StringToASCII

StringToASCII (str)

Convert a string to a vector of ASCII values.

StringToAlphabet

StringToAlphabet (str,alphabet)

Convert a string to a vector of 0-based alphabet values (positions in the alphabet string), -1’s for
unknown letters.

11.18. Symbolic Operations

SymbolicDerivative

SymbolicDerivative (f)

Attempt to symbolically differentiate the function f, where f is a function of one variable.

Examples:

genius> SymbolicDerivative(sin)

= (‘(x)=cos(x))
genius> SymbolicDerivative(‘(x)=7*x^2)

= (‘(x)=(7*(2*x)))

125



Chapter 11. List of GEL functions

SymbolicDerivativeTry

SymbolicDerivativeTry (f)

Attempt to symbolically differentiate the function f, where f is a function of one variable, returns
null if unsuccessful but is silent. (SeeSymbolicDerivative)

SymbolicNthDerivative

SymbolicNthDerivative (f,n)

Attempt to symbolically differentiate a function n times. (SeeSymbolicDerivative)

SymbolicNthDerivativeTry

SymbolicNthDerivativeTry (f,n)

Attempt to symbolically differentiate a function n times quietly and return null on failure (See
SymbolicNthDerivative)

SymbolicTaylorApproximationFunction

SymbolicTaylorApproximationFunction (f,x0,n)

Attempt to construct the taylor approximation function around x0 to the nth degree. (See
SymbolicDerivative)

11.19. Plotting

LinePlot

LinePlot (func1,func2,func3,...)

LinePlot (func1,func2,func3,x1,x2,y1,y2)

Plot a function (or several functions) with a line. First up to 10 arguments are functions, then
optionally you can specify the limits of the plotting windowasx1, x2, y1, y2. If limits are not
specified, then the currently set limits apply (SeeLinePlotWindow)

The parameterLinePlotDrawLegends controls the drawing of the legend.

Examples:

126



Chapter 11. List of GEL functions

genius> LinePlot(sin,cos)

genius> LinePlot(‘(x)=x^2,-1,1,0,1)

LinePlotClear

LinePlotClear ()

Show the line plot window and clear out functions and any other lines that were drawn.

LinePlotDrawLine

LinePlotDrawLine (x1,y1,x2,y2,...)

LinePlotDrawLine (v,...)

Draw a line fromx1,y1 to x2,y2. x1,y1, x2,y2 can be replaced by ann by 2 matrix for a longer
line.

Extra parameters can be added to specify line color, thickness, arrows, and the plotting window. You
can do this by adding a string"color", "thickness", "window", or"arrow", and after it either
the color string, the thicknes as an integer, the window as 4-vector, and for arrow either"origin",
"end", "both", or"none". For"window" we can specify"fit" rather than a vector in which
case, the x range will be set precisely and the y range will be set with five percent borders around
the line.

Examples:

genius> LinePlotDrawLine(0,0,1,1,"color","blue","thickness",3)

genius> LinePlotDrawLine([0,0;1,-1;-1,-1])

genius> LinePlotDrawLine([0,0;1,1],"arrow","end")

LinePlotParametric

LinePlotParametric (xfunc,yfunc,...)

LinePlotParametric (xfunc,yfunc,t1,t2,tinc)

LinePlotParametric (xfunc,yfunc,t1,t2,tinc,x1,x2,y1,y2)

Plot a parametric function with a line. First come the functions forx andy then optionally thet
limits ast1,t2,tinc, then optionally the limits asx1,x2,y1,y2.

If limits are not specified, then the currently set limits apply (SeeLinePlotWindow).

The parameterLinePlotDrawLegends controls the drawing of the legend.

127



Chapter 11. List of GEL functions

LinePlotCParametric

LinePlotCParametric (func,...)

LinePlotCParametric (func,t1,t2,tinc)

LinePlotCParametric (func,t1,t2,tinc,x1,x2,y1,y2)

Plot a parametric complex valued function with a line. Firstcomes the function that returnsx+iy,
then optionally thet limits ast1,t2,tinc, then optionally the limits asx1,x2,y1,y2.

If limits are not specified, then the currently set limits apply (SeeLinePlotWindow).

The parameterLinePlotDrawLegends controls the drawing of the legend.

SlopefieldClearSolutions

SlopefieldClearSolutions ()

Clears the solutions drawn by theSlopefieldDrawSolution function.

SlopefieldDrawSolution

SlopefieldDrawSolution (x, y, dx)

When a slope field plot is active, draw a solution with the specified initial condition. The standard
Runge-Kutta method is used with incrementdx. Solutions stay on the graph until a different plot is
shown or until you callSlopefieldClearSolutions. You can also use the graphical interface to
draw solutions and specify initial conditions with the mouse.

SlopefieldPlot

SlopefieldPlot (func)

SlopefieldPlot (func,x1,x2,y1,y2)

Plot a slope field. The functionfunc should take two real numbersx andy, or a single complex
number. Optionally you can specify the limits of the plotting window asx1, x2, y1, y2. If limits are
not specified, then the currently set limits apply (SeeLinePlotWindow).

The parameterLinePlotDrawLegends controls the drawing of the legend.

Examples:

genius> Slopefield(‘(x,y)=sin(x-y),-5,5,-5,5)

128



Chapter 11. List of GEL functions

SurfacePlot

SurfacePlot (func)

SurfacePlot (func,x1,x2,y1,y2,z1,z2)

Plot a surface function which takes either two arguments or acomplex number. First comes the
function then optionally limits asx1, x2, y1, y2, z1, z2. If limits are not specified, then the
currently set limits apply (SeeSurfacePlotWindow). Genius can only plot a single surface
function at this time.

Examples:

genius> SurfacePlot(|sin|,-1,1,-1,1,0,1.5)

genius> SurfacePlot(‘(x,y)=x^2+y,-1,1,-1,1,-2,2)

genius> SurfacePlot(‘(z)=|z|^2,-1,1,-1,1,0,2)

VectorfieldClearSolutions

VectorfieldClearSolutions ()

Clears the solutions drawn by theVectorfieldDrawSolution function.

VectorfieldDrawSolution

VectorfieldDrawSolution (x, y, dt, tlen)

When a vector field plot is active, draw a solution with the specified initial condition. The standard
Runge-Kutta method is used with incrementdt for an interval of lengthtlen. Solutions stay on the
graph until a different plot is shown or until you callVectorfieldClearSolutions. You can
also use the graphical interface to draw solutions and specify initial conditions with the mouse.

VectorfieldPlot

VectorfieldPlot (funcx, funcy)

VectorfieldPlot (funcx, funcy, x1, x2, y1, y2)

Plot a two dimensional vector field. The functionfuncx should be the dx/dt of the vectorfield and
the functionfuncy should be the dy/dt of the vectorfield. The functions should take two real
numbersx andy, or a single complex number. When the parameterVectorfieldNormalized is
true, then the magnitude of the vectors is normalized. That is, only the direction and not the
magnitude is shown.

Optionally you can specify the limits of the plotting windowasx1, x2, y1, y2. If limits are not
specified, then the currently set limits apply (SeeLinePlotWindow).

129



Chapter 11. List of GEL functions

The parameterLinePlotDrawLegends controls the drawing of the legend.

Examples:

genius> VectorfieldPlot(‘(x,y)=x^2-y, ‘(x,y)=y^2-x, -1, 1, -1, 1)

130



Chapter 12. Example Programs in GEL

Here is a function that calculates factorials:

function f(x) = if x <= 1 then 1 else (f(x-1)*x)

With indentation it becomes:

function f(x) = (
if x <= 1 then

1
else

(f(x-1)*x)
)

This is a direct port of the factorial function from the bc manpage. The syntax seems similar to bc, but
different in that in GEL, the last expression is the one that is returned. Using thereturn function
instead, it would be:

function f(x) = (
if (x <= 1) then return (1);
return (f(x-1) * x)

)

By far the easiest way to define a factorial function would be using the product loop as follows. This is
not only the shortest and fastest, but also probably the mostreadable version.

function f(x) = prod k=1 to x do k

Here is a larger example, this basically redefines the internal ref function to calculate the row echelon
form of a matrix. The functionref is built in and much faster, but this example demonstrates some of
the more complex features of GEL.

# Calculate the row-echelon form of a matrix
function MyOwnREF(m) = (

if not IsMatrix(m) or not IsValueOnly(m) then
(error("ref: argument not a value only matrix");bailout);

s := min(rows(m), columns(m));
i := 1;
d := 1;

131



Chapter 12. Example Programs in GEL

while d <= s and i <= columns(m) do (

# This just makes the anchor element non-zero if at
# all possible
if m@(d,i) == 0 then (
j := d+1;
while j <= rows(m) do (

if m@(j,i) == 0 then
(j=j+1;continue);

a := m@(j,);
m@(j,) := m@(d,);
m@(d,) := a;
j := j+1;
break

)
);
if m@(d,i) == 0 then
(i:=i+1;continue);

# Here comes the actual zeroing of all but the anchor
# element rows
j := d+1;
while j <= rows(m)) do (
if m@(j,i) != 0 then (

m@(j,) := m@(j,)-(m@(j,i)/m@(d,i))*m@(d,)
);
j := j+1

);
m@(d,) := m@(d,) * (1/m@(d,i));
d := d+1;
i := i+1

);
m

)

132



Chapter 13. Settings

To configure Genius Mathematics Tool, chooseSettings−→Preferences. There are several basic
parameters provided by the calculator in addition to the ones provided by the standard library. These
control how the calculator behaves.

Changing Settings with GEL: Many of the settings in Genius are simply global variables, and can
be evaluated and assigned to in the same way as normal variables. See Section 5.2 about evaluating
and assigning to variables, and Section 11.3 for a list of settings that can be modified in this way.

As an example, you can set the maximum number of digits in a result to 12 by typing:

MaxDigits = 12

13.1. Output

Maximum digits to output

The maximum digits in a result (MaxDigits)

Results as floats

If the results should be always printed as floats (ResultsAsFloats)

Floats in scientific notation

If floats should be in scientific notation (ScientificNotation)

Always print full expressions

Should we print out full expressions for non-numeric returnvalues (longer than a line)
(FullExpressions)

Use mixed fractions

If fractions should be printed as mixed fractions such as "1 1/3" rather than "4/3".
(MixedFractions)

Display 0.0 when floating point number is less than 10^-x (0=never chop)

How to chop output. But only when other numbers nearby are large. See the documentation of the
paramterOutputChopExponent.

Only chop numbers when another number is greater than 10^-x

When to chop output. This is set by the paramterOutputChopWhenExponent. See the
documentation of the paramterOutputChopExponent.

133



Chapter 13. Settings

Remember output settings across sessions

Should the output settings in theNumber/Expression output options frame be remembered for
next session. Does not apply to theError/Info output options frame.

If unchecked, either the default or any previously saved settings are used each time Genius starts up.
Note that settings are saved at the end of the session, so if you wish to change the defaults check this
box, restart Genius Mathematics Tool and then uncheck it again.

Display errors in a dialog

If set the errors will be displayed in a seprate dialog, if unset the errors will be printed on the
console.

Display information messages in a dialog

If set the information messages will be displayed in a seprate dialog, if unset the information
messages will be printed on the console.

Maximum errors to display

The maximum number of errors to return on one evaluation (MaxErrors). If you set this to 0 then
all errors are always returned. Usually if some loop causes many errors, then it is unlikely that you
will be able to make sense out of more than a few of these, so seeing a long list of errors is usually
not helpful.

In addition to these preferences, there are some preferences that can only be changed by setting them in
the workspace console. For others that may affect the outputseeSection 11.3.

IntegerOutputBase

The base that will be used to output integers

OutputStyle

A string, can be"normal", "latex", "mathml" or "troff" and it will effect how matrices (and
perhaps other stuff) is printed, useful for pasting into documents. Normal style is the default human
readable printing style of Genius Mathematics Tool. The other styles are for typsetting in LaTeX,
MathML (XML), or in Troff.

13.2. Precision

Floating point precision

The floating point precision in bits (FloatPrecision). Note that changing this only affects newly
computed quantities. Old values stored in variables are obviously still in the old precision and if you
want to have them more precise you will have to recompute them. Exceptions to this are the system
constants such aspi or e.

134



Chapter 13. Settings

Remember precision setting across sessions

Should the precision setting be remembered for the next session. If unchecked, either the default or
any previously saved setting is used each time Genius startsup. Note that settings are saved at the
end of the session, so if you wish to change the default check this box, restart genius and then
uncheck it again.

13.3. Terminal

Terminal refers to the console in the work area.

Scrollback lines

Lines of scrollback in the terminal.

Font

The font to use on the terminal.

Black on white

If to use black on white on the terminal.

Blinking cursor

If the cursor in the terminal should blink when the terminal is in focus. This can sometimes be
annoying and it generates idle traffic if you are using Geniusremotely.

13.4. Memory

Maximum number of nodes to allocate

Internally all data is put onto small nodes in memory. This gives a limit on the maximum number of
nodes to allocate for computations. This avoids the problemof running out of memory if you do
something by mistake which uses too much memory, such as a recursion without end. This could
slow your computer and make it hard to even interrupt the program.

Once the limit is reached, Genius Mathematics Tool asks if you wish to interrupt the computation or
if you wish to continue. If you continue, no limit is applied and it will be possible to run your
computer out of memory. The limit will be applied again next time you execute a program or an
expression on the Console regardless of how you answered thequestion.

Setting the limit to zero means there is no limit to the amountof memory that genius uses.

135



Chapter 14. About Genius Mathematics Tool

Genius Mathematics Tool was written by Jiří (George) Lebl (<jirka@5z.com>). The history of Genius
Mathematics Tool goes back to late 1997. It was the first calculator program for GNOME, but it then
grew beyond being just a desktop calculator. To find more information about Genius Mathematics Tool,
please visit the Genius Web page (http://www.jirka.org/genius.html).

To report a bug or make a suggestion regarding this application or this manual, follow the directions in
this document (ghelp:gnome-feedback).

This program is distributed under the terms of the GNU General Public license as published by the Free
Software Foundation; either version 2 of the License, or (atyour option) any later version. A copy of this
license can be found at this link (ghelp:gpl), or in the file COPYING included with the source code of
this program.

Jǐrí Lebl was during various parts of the development partially supported for the work by NSF grant
DMS 0900885 and the University of Illinois at Urbana-Champaign. The software has been used for both
teaching and research.

136


