
APACHE UNOMI 2.X -
DOCUMENTATION

TABLE OF CONTENTS

1. What’s new. 6

1.1. What’s new in Apache Unomi 2.0. 6

1.1.1. Introducing profiles aliases . 7

1.1.2. Scopes declarations are now required . 7

1.1.3. JSON Schemas. 7

1.1.4. Updated data model. 7

1.1.5. New Web Tracker . 9

1.1.6. GraphQL API - beta . 9

1.1.7. Migrate from Unomi 1.x . 10

1.1.8. Elasticsearch compatibility. 10

2. Discover Unomi . 10

2.1. Quick start with Docker . 10

2.2. Quick Start manually . 11

2.3. Getting started with Unomi . 12

2.3.1. Prerequisites. 12

2.3.2. Running Unomi . 13

2.4. Unomi web tracking tutorial . 13

2.4.1. Installing the web tracker in a web page . 13

2.4.2. Creating a scope to collect the data . 16

2.4.3. Using tracker in your own JavaScript projects. 16

2.4.4. Viewing collected events . 18

2.4.5. Viewing the current profile . 18

2.4.6. Adding a rule . 19

2.4.7. Adding personalization . 19

2.4.8. Conclusion. 21

2.4.9. Next steps . 21

3. Apache Unomi Recipes and requests . 21

3.1. Recipes . 21

3.1.1. Introduction . 21

3.1.2. Enabling debug mode . 21

3.1.3. How to read a profile. 22

3.1.4. How to update a profile from the public internet . 23

3.1.5. How to search for profile events . 28

3.1.6. How to create a new rule . 29

3.1.7. How to search for profiles . 30

3.1.8. Getting / updating consents . 31

3.1.9. How to send a login event to Unomi . 31

3.1.10. What profile aliases are and how to use them. 32

3.2. Request examples . 35

3.2.1. Retrieving your first context. 35

3.2.2. Retrieving a context as a JSON object. 35

3.2.3. Accessing profile properties in a context . 35

3.2.4. Sending events using the context servlet . 36

3.2.5. Sending events using the eventcollector servlet . 37

Apache Unomi 2.x - Documentation - 1

3.2.6. Where to go from here . 38

4. Configuration. 38

4.1. Centralized configuration . 38

4.2. Changing the default configuration using environment variables (i.e. Docker configuration) . . . 39

4.3. Changing the default configuration using property files . 39

4.4. Secured events configuration . 40

4.5. Installing the MaxMind GeoIPLite2 IP lookup database . 41

4.6. Installing Geonames database . 42

4.7. REST API Security . 42

4.8. Scripting security . 42

4.8.1. Multi-layer scripting filtering system . 42

4.8.2. Scripts and expressions. 43

4.8.3. Scripting expression filtering configuration parameters . 46

4.8.4. Groovy Actions . 48

4.8.5. Scripting roadmap . 52

4.9. Automatic profile merging . 53

4.10. Securing a production environment . 53

4.11. Integrating with an Apache HTTP web server . 54

4.12. Changing the default tracking location . 56

4.13. Apache Karaf SSH Console . 57

4.14. ElasticSearch authentication and security . 57

4.14.1. User authentication ! . 57

4.14.2. SSL communication . 57

4.14.3. Permissions. 58

4.15. Health Check Extension . 58

4.15.1. Configuration . 60

5. JSON schemas . 60

5.1. Introduction . 60

5.1.1. What is a JSON Schema . 60

5.1.2. Key concepts . 61

5.1.3. How are JSON Schema used in Unomi . 64

5.2. JSON schema API . 66

5.2.1. List existing schemas . 66

5.2.2. Read a schema . 66

5.2.3. Create / update a JSON schema to validate an event . 67

5.2.4. Deleting a schema . 67

5.2.5. Error Management . 68

5.2.6. Details on invalid events . 68

5.3. Develop with Unomi and JSON Schemas . 68

5.3.1. Logs in debug mode. 68

5.3.2. validateEvent endpoint . 69

5.3.3. validateEvents endpoint . 69

5.4. Extend an existing schema . 70

5.4.1. When a extension is needed? . 71

5.4.2. Understanding how extensions are merged in unomi . 71

5.4.3. How to add an extension through the API . 72

6. GraphQL API . 72

6.1. Introduction . 72

6.2. Enabling the API . 72

6.3. Endpoints. 73

6.4. GraphQL Schema . 73

Apache Unomi 2.x - Documentation - 2

6.5. Graphql request examples . 73

6.5.1. Retrieving your first profile . 73

6.5.2. Updating profile . 74

6.5.3. Restricted methods . 75

6.5.4. Deleting profile. 77

6.5.5. Where to go from here . 78

7. Migrations . 78

7.1. From version 1.6 to 2.0 . 78

7.2. Migration Overview . 78

7.3. Updating applications consuming Unomi . 78

7.3.1. Data Model changes. 78

7.3.2. Create JSON schemas . 79

7.4. Migrating your existing data. 79

7.4.1. Elasticsearch version and capacity . 79

7.4.2. Migrate custom data . 80

7.4.3. Perform the migration. 80

7.5. From version 1.5 to 1.6 . 83

7.6. From version 1.4 to 1.5 . 83

7.6.1. Data model and ElasticSearch 7 . 83

7.6.2. API changes. 83

7.6.3. Migration steps. 84

7.7. Important changes in public servlets since version 1.5.5 and 2.0.0. 86

8. Queries and aggregations. 86

8.1. Query counts . 86

8.2. Metrics . 87

8.3. Aggregations . 88

8.3.1. Aggregation types. 88

9. Profile import & export . 94

9.1. Importing profiles. 94

9.1.1. Import API. 95

9.2. Exporting profiles . 96

9.2.1. Export API . 96

9.3. Configuration in details . 98

10. Consent management . 99

10.1. Consent API . 99

10.1.1. Profiles with consents . 100

10.1.2. Consent type definitions . 101

10.1.3. Creating / update a visitor consent . 101

10.1.4. How it works (internally) . 103

11. Privacy management . 104

11.1. Setting up access to the privacy endpoint . 104

11.2. Anonymizing a profile . 105

11.3. Downloading profile data . 105

11.4. Deleting a profile . 105

11.5. Related . 105

12. Cluster setup . 106

12.1. Cluster setup . 106

13. Reference . 106

13.1. Useful Apache Unomi URLs. 106

13.2. How profile tracking works . 107

13.2.1. Steps. 107

Apache Unomi 2.x - Documentation - 3

13.3. Context Request Flow. 108

13.4. Data Model Overview. 109

13.5. Scope . 110

13.5.1. Example. 110

13.6. Item . 111

13.6.1. Structure definition . 111

13.7. Metadata . 112

13.7.1. Structure definition . 112

13.7.2. Example. 113

13.8. MetadataItem . 114

13.8.1. Structure definition . 114

13.8.2. Example. 114

13.9. Event . 114

13.9.1. Fields . 115

13.9.2. Event types . 116

13.10. Profile. 116

13.10.1. Structure definition . 116

13.10.2. Example. 117

13.11. Profile aliases . 119

13.11.1. Structure definition . 119

13.11.2. Example. 120

13.12. Persona . 120

13.12.1. Structure definition . 120

13.12.2. Example. 120

13.13. Consent . 121

13.13.1. Structure definition . 121

13.13.2. Example. 121

13.14. Session . 121

13.14.1. Structure definition . 122

13.14.2. Example. 122

13.15. Segment . 124

13.15.1. Structure definition . 124

13.15.2. Example. 125

13.16. Condition . 126

13.16.1. Structure definition . 127

13.16.2. Example. 127

13.17. Rule. 128

13.17.1. Structure definition . 130

13.17.2. Example. 130

13.18. Action . 131

13.18.1. Structure definition . 131

13.18.2. Example. 132

13.19. List . 132

13.19.1. Structure definition . 132

13.19.2. Example. 132

13.20. Goal . 133

13.20.1. Structure definition . 133

13.20.2. Example. 133

13.21. Campaign. 134

13.21.1. Structure definition . 134

13.21.2. Example. 135

Apache Unomi 2.x - Documentation - 4

13.22. Scoring plan . 136

13.22.1. Structure definition . 137

13.22.2. Example. 137

13.23. Built-in Event types . 138

13.23.1. Login event type. 138

13.23.2. View event type . 140

13.23.3. Form event type . 141

13.23.4. Update properties event type . 143

13.23.5. Identify event type. 145

13.23.6. Session created event type . 147

13.23.7. Goal event type. 148

13.23.8. Modify consent event type . 150

13.24. Built-in condition types . 153

13.24.1. Existing condition type descriptors . 154

13.25. Built-in action types . 154

13.25.1. Existing action types descriptors . 155

13.26. Updating Events Using the Context Servlet . 156

13.26.1. Solution . 156

13.26.2. Defining Rules . 156

13.27. Unomi Web Tracker reference . 157

13.27.1. Custom events . 157

13.27.2. Integrating with tag managers. 160

13.27.3. Cookie/session handling . 161

13.27.4. JavaScript API. 161

14. Integration samples . 162

14.1. Samples . 162

14.2. Login sample . 162

14.2.1. Warning ! . 162

14.2.2. Installing the samples . 162

14.3. Twitter sample . 163

14.3.1. Overview. 163

14.3.2. Interacting with the context server . 164

14.3.3. Retrieving context information from Unomi using the context servlet 164

14.4. Example . 165

14.4.1. HTML page . 165

14.4.2. Javascript . 165

14.5. Conclusion . 177

14.6. Annex . 177

14.7. Weather update sample. 178

15. Connectors . 178

15.1. Connectors. 178

15.1.1. Call for contributors . 179

15.2. Salesforce Connector . 179

15.2.1. Getting started . 179

15.2.2. Properties . 181

15.2.3. Hot-deploying updates to the Salesforce connector (for developers) 181

15.2.4. Using the Salesforce Workbench for testing REST API . 182

15.2.5. Setting up Streaming Push queries . 182

15.2.6. Executing the unit tests . 182

16. Developers . 183

16.1. Building . 183

Apache Unomi 2.x - Documentation - 5

1. WHAT’S NEW

1.1. WHAT’S NEW IN APACHE UNOMI 2.0

Apache Unomi 2 is a new release focused on improving core functionalities and robustness of the

product.

16.1.1. Initial Setup. 183

16.1.2. Building . 183

16.1.3. Installing an ElasticSearch server . 184

16.1.4. Deploying the generated binary package . 185

16.1.5. Deploying into an existing Karaf server . 185

16.1.6. JDK Selection on Mac OS X . 186

16.1.7. Running the integration tests . 187

16.1.8. Testing with an example page . 187

16.2. SSH Shell Commands . 187

16.2.1. Using the shell . 187

16.2.2. Lifecycle commands . 188

16.2.3. Runtime commands. 189

16.3. Writing Plugins . 193

16.4. Types vs. instances . 194

16.5. Plugin structure . 194

16.6. Extension points . 195

16.6.1. ActionType . 195

16.6.2. ConditionType . 195

16.6.3. Persona . 195

16.6.4. PropertyMergeStrategyType. 195

16.6.5. PropertyType . 196

16.6.6. Rule . 196

16.6.7. Scoring. 196

16.6.8. Segments . 196

16.6.9. Tag . 196

16.6.10. ValueType . 196

16.7. Custom plugins . 196

16.7.1. Creating a plugin . 196

16.7.2. Deployment and custom definition . 197

16.7.3. Predefined segments . 198

16.7.4. Predefined rules. 198

16.7.5. Predefined properties . 199

16.7.6. Predefined child conditions . 200

16.7.7. Predefined personas . 200

16.7.8. Custom action types. 201

16.7.9. Custom condition types . 203

16.8. Migration patches. 204

Apache Unomi 2.x - Documentation - 6

The introduction of tighter data validation with JSON Schemas required some changes in the product

data model, which presented an opportunity for noticeable improvements in the overall performance.

This new release also introduces a first (beta) version of the Unomi GraphQL API.

1.1.1. INTRODUCING PROFILES ALIASES

Profiles may now have alias IDs, which is a new way to reference profiles using multiple IDs. The Unomi

ID still exists, but a new index with aliases can reference a single Unomi profile. This enables more

flexible integrations with external systems, as well as provide more flexible and reliable merging

mechanisms. A new REST API makes it easy to define, update and remove aliases for profiles. You can

read more about profile aliases here.

1.1.2. SCOPES DECLARATIONS ARE NOW REQUIRED

Scopes declarations are now required in Unomi 2. When submitting an event and specifying a scope,

that scope must already be declared on the platform.

Scopes can be easily created via the corresponding REST API (cxs/scopes)

For example, an "apache" scope can be created using the following API call.

curl --location --request POST 'http://localhost:8181/cxs/scopes' \

-u 'karaf:karaf' \

--header 'Content-Type: application/json' \

--data-raw '{

"itemId": "apache",

"itemType": "scope"

}'

1.1.3. JSON SCHEMAS

Apache Unomi 2 introduces support for JSON Schema for all of its publicly exposed endpoints. Data

received by Apache Unomi 2 will first be validated against a known schema to make sure it complies

with an expected payload. If the received payload does not match a known schema, it will be rejected by

Apache Unomi 2.

Apache Unomi 2 also introduces a set of administrative endpoints allowing new schemas and/or

schemas extensions to be registered.

More details about JSON Schemas implementation are available in the corresponding section of the

documentation.

1.1.4. UPDATED DATA MODEL

The introduction of JSON schema required us to modify Apache Unomi data model, One of the key

differences is the removal of open maps.

Apache Unomi 2.x - Documentation - 7

https://json-schema.org/specification.html

The properties field in the events objects provided by unomi are now restricted by JSON schema. This

means object properties must be declared in a JSON schema for an event to be accepted.

A new property, flattenedProperties has been introduced to the event object, this property has been

added to store the properties as flattened in Elasticsearch and should avoid mapping explosion for

dynamic properties.

If there is dynamic properties that you want to send with your event, you should use the

flattenedProperties field of the event.

It’s also necessary to specify the format of the values which are added to flattenedProperties by JSON

schema but these value will be stored as flattened and will not create dynamic mapping contrary to the

properties field of the events.

Here is an example for objects that used dynamic properties for URL parameters:

The following event example in Apache Unomi 1.x:

{

 "eventType":"view",

 "scope":"digitall",

 "properties":{

 "URLParameters":{

 "utm_source":"source"

 }

 },

 "target":{

 "scope":"digitall",

 "itemId":"30c0a9e3-4330-417d-9c66-4c1beec85f08",

 "itemType":"page",

 "properties":{

 "pageInfo":{

 "pageID":"30c0a9e3-4330-417d-9c66-4c1beec85f08",

 "nodeType":"jnt:page",

 "pageName":"Home",

 ...

 },

 "attributes":{},

 "consentTypes":[]

 }

 },

 "source":{

 "scope":"digitall",

 "itemId":"ff5886e0-d75a-4061-9de9-d90dfc9e18d8",

 "itemType":"site"

 }

}

Is replaced by the following in Apache Unomi 2.x:

Apache Unomi 2.x - Documentation - 8

{

 "eventType":"view",

 "scope":"digitall",

 "flattenedProperties":{

 "URLParameters":{

 "utm_source":"source"

 }

 },

 "target":{

 "scope":"digitall",

 "itemId":"30c0a9e3-4330-417d-9c66-4c1beec85f08",

 "itemType":"page",

 "properties":{

 "pageInfo":{

 "pageID":"30c0a9e3-4330-417d-9c66-4c1beec85f08",

 "nodeType":"jnt:page",

 "pageName":"Home",

 ...

 },

 "attributes":{},

 "consentTypes":[]

 }

 },

 "source":{

 "scope":"digitall",

 "itemId":"ff5886e0-d75a-4061-9de9-d90dfc9e18d8",

 "itemType":"site"

 }

}

If using the default Apache 1.x data model, our Unomi 2 migration process will handle the data model

changes for you.

If you are using custom events/objects, please refer to the detailed migration guide for more details.

1.1.5. NEW WEB TRACKER

Apache Unomi 2.0 Web Tracker, located in extensions/web-tracker/ has been completely rewritten. It is

no longer based on an external library and is fully self-sufficient. It is based on an external contribution

that has been used in production on many sites.

You can find more information about the new web tracker here.

1.1.6. GRAPHQL API - BETA

Apache Unomi 2.0 sees the introduction of a new (beta) GraphQL API. Available behind a feature flag

(the API disabled by default), the GraphQL API is available for you to play with.

More details about how to enable/disable the GraphQL API are available in the corresponding section of

the documentation.

Apache Unomi 2.x - Documentation - 9

We welcome tickets/PRs to improve its robustness and progressively make it ready for prime time.

1.1.7. MIGRATE FROM UNOMI 1.X

To facilitate migration we prepared a set of scripts that will automatically handle the migration of your

data from Apache Unomi 1.5+ to Apache Unomi 2.0.

It is worth keeping in mind that for Apache Unomi 2.0 we do not support “hot” migration, the migration

process will require a shutdown of your cluster to guarantee that no new events will be collected while

data migration is in progress.

Special caution must be taken if you declared custom events as our migration scripts can only handle

objects we know of. More details about migration (incl. of custom events) is available in the

corresponding section corresponding section of the documentation.

1.1.8. ELASTICSEARCH COMPATIBILITY

We currently recommend using Elasticsearch 7.17.5 with Apache Unomi 2.0, this ensure you are on a

recent version that is not impacted by the log4j vulnerabilities (fixed in Elasticsearch 7.16.3).

This version increase is releated to Apache Unomi 2.0 makeing use of a new Elasticsearch field type

called Flattened, and although it was available in prior versions of Elasticsearch, we do not recommend

using those due to the above-mentioned log4j vulnerabilities.

2. DISCOVER UNOMI

2.1. QUICK START WITH DOCKER

Begin by creating a docker-compose.yml file with the following content:

Apache Unomi 2.x - Documentation - 10

https://www.elastic.co/guide/en/elasticsearch/reference/7.17/flattened.html

version: '3.8'

services:

 elasticsearch:

 image: docker.elastic.co/elasticsearch/elasticsearch:7.17.5

 environment:

 - discovery.type=single-node

 ports:

 - 9200:9200

 unomi:

 # Unomi version can be updated based on your needs

 image: apache/unomi:2.0.0

 environment:

 - UNOMI_ELASTICSEARCH_ADDRESSES=elasticsearch:9200

 - UNOMI_THIRDPARTY_PROVIDER1_IPADDRESSES=0.0.0.0/0,::1,127.0.0.1

 ports:

 - 8181:8181

 - 9443:9443

 - 8102:8102

 links:

 - elasticsearch

 depends_on:

 - elasticsearch

From the same folder, start the environment using docker-compose up and wait for the startup to

complete.

Try accessing https://localhost:9443/cxs/cluster with username/password: karaf/karaf . You might get a

certificate warning in your browser, just accept it despite the warning it is safe.

2.2. QUICK START MANUALLY

1) Install JDK 11 (https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-

2133151.html) and make sure you set the JAVA_HOME variable https://docs.oracle.com/cd/E19182-01/

820-7851/inst_cli_jdk_javahome_t/ (see our Getting Started guide for more information on JDK

compatibility)

2) Download ElasticSearch here : https://www.elastic.co/downloads/past-releases/elasticsearch-7-17-5

(please make sure you use the proper version : 7.17.5)

3) Uncompress it and change the config/elasticsearch.yml to include the following config :

cluster.name: contextElasticSearch

4) Launch ElasticSearch using : bin/elasticsearch

5) Download Apache Unomi here : https://unomi.apache.org/download.html

6) Start it using : ./bin/karaf

Apache Unomi 2.x - Documentation - 11

https://localhost:9443/cxs/cluster
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://docs.oracle.com/cd/E19182-01/820-7851/inst_cli_jdk_javahome_t/
https://docs.oracle.com/cd/E19182-01/820-7851/inst_cli_jdk_javahome_t/
https://www.elastic.co/downloads/past-releases/elasticsearch-7-17-5
https://unomi.apache.org/download.html

7) Start the Apache Unomi packages using unomi:start in the Apache Karaf Shell

8) Wait for startup to complete

9) Try accessing https://localhost:9443/cxs/cluster with username/password: karaf/karaf . You might get a

certificate warning in your browser, just accept it despite the warning it is safe.

10) Request your first context by simply accessing : http://localhost:8181/cxs/context.js?sessionId=1234

11) If something goes wrong, you should check the logs in ./data/log/karaf.log. If you get errors on

ElasticSearch, make sure you are using the proper version.

Next steps:

• Trying our integration samples page

2.3. GETTING STARTED WITH UNOMI

We will first get you up and running with an example. We will then lift the corner of the cover

somewhat and explain in greater details what just happened.

2.3.1. PREREQUISITES

This document assumes working knowledge of git to be able to retrieve the code for Unomi and the

example. Additionally, you will require a working Java 11 or above install. Refer to

http://www.oracle.com/technetwork/java/javase/ for details on how to download and install Java SE 11

or greater.

JDK COMPATIBILITY

Starting with Java 9, Oracle made some big changes to the Java platform releases. This is why Apache

Unomi is focused on supporting the Long Term Supported versions of the JDK, currently version 11. We

do not test with intermediate versions so they may or may not work properly. Currently the most tested

version is version 11.

Also, as there are new licensing restrictions on JDKs provided by Oracle for production usages, Apache

Unomi has also added support for OpenJDK builds. Other JDK distributions might also work but are not

regularly tested so you should use them at your own risks.

ELASTICSEARCH COMPATIBILITY

Starting with version 2.0.0 Apache Unomi adds compatibility with ElasticSearch 7.17.5 . It is highly

recommended to use the ElasticSearch version specified in the documentation whenever possible. If in

doubt, don’t hesitate to check with the Apache Unomi community to get the latest information about

ElasticSearch version compatibility.

Apache Unomi 2.x - Documentation - 12

https://localhost:9443/cxs/cluster
http://localhost:8181/cxs/context.js?sessionId=1234
https://git-scm.com/
http://www.oracle.com/technetwork/java/javase/

2.3.2. RUNNING UNOMI

START UNOMI

Start Unomi according to the quick start with docker or by compiling using the building instructions.

Once you have Karaf running, you should wait until you see the following messages on the Karaf

console:

Initializing user list service endpoint...

Initializing geonames service endpoint...

Initializing segment service endpoint...

Initializing scoring service endpoint...

Initializing campaigns service endpoint...

Initializing rule service endpoint...

Initializing profile service endpoint...

Initializing cluster service endpoint...

This indicates that all the Unomi services are started and ready to react to requests. You can then open a

browser and go to http://localhost:8181/cxs to see the list of available RESTful services or retrieve an

initial context at http://localhost:8181/cxs/context.json (which isn’t very useful at this point).

You can now find an introduction page at the following location: http://localhost:8181

Also now that your service is up and running you can go look at the request examples to learn basic

requests you can do once your server is up and running.

2.4. UNOMI WEB TRACKING TUTORIAL

In this tutorial we will guide through the basic steps of getting started with a web tracking project. You

will see how to integrate the built-in web tracker with an existing web site and what this enables.

If you prefer to use existing HTML and Javascript rather than building your own, all the code we feature

in this tutorial is extracted from our tracker sample which is available here: https://github.com/apache/

unomi/blob/master/extensions/web-tracker/wab/src/main/webapp/index.html . However you will still

need to use the REST API calls to create the scope and rule to make it all work.

2.4.1. INSTALLING THE WEB TRACKER IN A WEB PAGE

Using the built-in tracker is pretty simple, simply add the following code to your HTML page :

 <script type="text/javascript" src="/tracker/unomi-web-tracker.min.js"></script>

or you can also use the non-minified version that is available here:

 <script type="text/javascript" src="/tracker/unomi-web-tracker.js"></script>

Apache Unomi 2.x - Documentation - 13

http://localhost:8181/cxs
http://localhost:8181/cxs/context.json
http://localhost:8181
https://github.com/apache/unomi/blob/master/extensions/web-tracker/wab/src/main/webapp/index.html
https://github.com/apache/unomi/blob/master/extensions/web-tracker/wab/src/main/webapp/index.html

This will only load the tracker. To initialize it use a snipper like the following code:

Apache Unomi 2.x - Documentation - 14

 <script type="text/javascript">

 (function () {

 const unomiTrackerTestConf = {

 "scope": "unomi-tracker-test",

 "site": {

 "siteInfo": {

 "siteID": "unomi-tracker-test"

 }

 },

 "page": {

 "pageInfo": {

 "pageID": "unomi-tracker-test-page",

 "pageName": document.title,

 "pagePath": document.location.pathname,

 "destinationURL": document.location.origin + document.location.pathname,

 "language": "en",

 "categories": [],

 "tags": []

 },

 "attributes": {},

 "consentTypes": []

 },

 "events:": [],

 "wemInitConfig": {

 "contextServerUrl": document.location.origin,

 "timeoutInMilliseconds": "1500",

 "contextServerCookieName": "context-profile-id",

 "activateWem": true,

 "trackerSessionIdCookieName": "unomi-tracker-test-session-id",

 "trackerProfileIdCookieName": "unomi-tracker-test-profile-id"

 }

 }

 // generate a new session

 if

(unomiWebTracker.getCookie(unomiTrackerTestConf.wemInitConfig.trackerSessionIdCookieName)

== null) {

unomiWebTracker.setCookie(unomiTrackerTestConf.wemInitConfig.trackerSessionIdCookieName,

unomiWebTracker.generateGuid(), 1);

 }

 // init tracker with our conf

 unomiWebTracker.initTracker(unomiTrackerTestConf);

 unomiWebTracker._registerCallback(() => {

 console.log("Unomi tracker test successfully loaded context",

unomiWebTracker.getLoadedContext());

 }, 'Unomi tracker test callback example');

 // start the tracker

 unomiWebTracker.startTracker();

 })();

 </script>

Apache Unomi 2.x - Documentation - 15

2.4.2. CREATING A SCOPE TO COLLECT THE DATA

You might notice the scope used in the snippet. All events sent to Unomi must be associated with a scope,

that must have been created before events are accepted. So in order to make sure the events are

collected with the above Javascript code, we must create a scope with the following request.

curl --location --request POST 'http://localhost:8181/cxs/scopes' \

 --header 'Authorization: Basic a2FyYWY6a2FyYWY=' \

 --header 'Content-Type: application/json' \

 --data-raw '{

 "itemId": "unomi-tracker-test",

 "metadata": {

 "id": "unomi-tracker-test",

 "name": "Unomi tracker Test Scope"

 }

 }'

The authorization is the default username/password for the REST API, which is karaf:karaf and you that

should definitely be changed as soon as possible by modifying the etc/users.properties file.

2.4.3. USING TRACKER IN YOUR OWN JAVASCRIPT PROJECTS

The tracker also exists as an NPM library that you can integrate with your own Javascript projects. You

can find the library here:

https://www.npmjs.com/package/apache-unomi-tracker

Here’s an example on how to use it:

 yarn add apache-unomi-tracker

You can then simply use it in your JS code using something like this:

Apache Unomi 2.x - Documentation - 16

import {useTracker} from "apache-unomi-tracker";

(function () {

 const unomiWebTracker = useTracker();

 const unomiTrackerTestConf = {

 "scope": "unomi-tracker-test",

 "site": {

 "siteInfo": {

 "siteID": "unomi-tracker-test"

 }

 },

 "page": {

 "pageInfo": {

 "pageID": "unomi-tracker-test-page",

 "pageName": document.title,

 "pagePath": document.location.pathname,

 "destinationURL": document.location.origin + document.location.pathname,

 "language": "en",

 "categories": [],

 "tags": []

 },

 "attributes": {},

 "consentTypes": []

 },

 "events:": [],

 "wemInitConfig": {

 "contextServerUrl": document.location.origin,

 "timeoutInMilliseconds": "1500",

 "contextServerCookieName": "context-profile-id",

 "activateWem": true,

 "trackerSessionIdCookieName": "unomi-tracker-test-session-id",

 "trackerProfileIdCookieName": "unomi-tracker-test-profile-id"

 }

 }

 // generate a new session

 if

(unomiWebTracker.getCookie(unomiTrackerTestConf.wemInitConfig.trackerSessionIdCookieName)

== null) {

unomiWebTracker.setCookie(unomiTrackerTestConf.wemInitConfig.trackerSessionIdCookieName,

unomiWebTracker.generateGuid(), 1);

 }

 // init tracker with our conf

 unomiWebTracker.initTracker(unomiTrackerTestConf);

 unomiWebTracker._registerCallback(() => {

 console.log("Unomi tracker test successfully loaded context",

unomiWebTracker.getLoadedContext());

 }, 'Unomi tracker test callback example');

 // start the tracker

 unomiWebTracker.startTracker();

})();

Apache Unomi 2.x - Documentation - 17

2.4.4. VIEWING COLLECTED EVENTS

There are multiple ways to view the events that were received. For example, you could use the following

cURL request:

curl --location --request POST 'http://localhost:8181/cxs/events/search' \

 --header 'Authorization: Basic a2FyYWY6a2FyYWY=' \

 --header 'Content-Type: application/json' \

 --data-raw '{

 "sortby" : "timeStamp:desc",

 "condition" : {

 "type" : "matchAllCondition"

 }

 }'

Another (powerful) way to look at events is to use the SSH Console. You can connect to it with the

following shell command:

 ssh -p 8102 karaf@localhost

Using the same username password (karaf:karaf) and then you can use command such as :

• event-tail to view in realtime the events as they come in (CTRL+C to stop)

• event-list to view the latest events

• event-view EVENT_ID to view the details of a specific event

2.4.5. VIEWING THE CURRENT PROFILE

By default, Unomi uses a cookie called context-profile-id to keep track of the current profile. You can use

this the value of this cookie which contains a UUID to lookup the details of the profile. For example with

the SSH console you can simply to:

profile-view PROFILE_UUID

Which will print out the details of the profile with the associated ID. Another interesting command is

profile-list to list all the recently modified profiles

You could also retrieve the profile details using the REST API by using a request such as this one:

curl --location --request GET 'http://localhost:8181/cxs/profiles/PROFILE_UUID' \

--header 'Authorization: Basic a2FyYWY6a2FyYWY=' \

Apache Unomi 2.x - Documentation - 18

2.4.6. ADDING A RULE

Rules are a powerful ways to react in real-time to incoming events. For example a rule could update a

profile when a certain event comes in, either copying values from the event or performing some kind of

computation when the event occurs, including accessing remote systems such as a Salesforce CRM (see

the Salesforce connector sample).

In this example we will simply setup a basic rule that will react to the view event and set a property in

the current profile.

curl --location --request POST 'http://localhost:8181/cxs/rules' \

--header 'Authorization: Basic a2FyYWY6a2FyYWY=' \

--header 'Content-Type: application/json' \

--data-raw '{

 "metadata": {

 "id": "viewEventRule",

 "name": "View event rule",

 "description": "Increments a property on a profile to indicate that this rule executed successfully

when a view event occurs"

 },

 "condition": {

 "type": "eventTypeCondition",

 "parameterValues": {

 "eventTypeId": "view"

 }

 },

 "actions": [

 {

 "type": "incrementPropertyAction",

 "parameterValues": {

 "propertyName": "pageViewCount"

 }

 }

]

}'

The above rule will execute when a view event is received (which is automatically sent by the tracker

when a page is loaded) and increments a property called pageViewCount on the user’s profile.

You can then reload then page and check with the profile-view PROFILE_UUID SSH command that the

profile was updated with the new property and that it is incremented on each page reload.

You can also use the rule-list command to display all the rules in the system and the rule-tail to watch in

real-time which rules are executed. The rule-view RULE_ID command will let you view the contents of a

rule.

2.4.7. ADDING PERSONALIZATION

The last step is to use the newly added property to the profile to perform some page personalization. In

order to do that we will use the tracker’s API to register a personalization that will be using a condition

that checks if the pageViewCount is higher than 5. If it has, variant1 will be displayed, otherwise the

Apache Unomi 2.x - Documentation - 19

fallback variant variant2 will be used instead.

 variants = {

 "var1" : {

 content : "variant1",

 },

 "var2" : {

 content : "variant2",

 }

 }

 unomiWebTracker.registerPersonalizationObject({

 "id": "testPersonalization",

 "strategy": "matching-first",

 "strategyOptions": {"fallback": "var2"},

 "contents": [{

 "id": "var1",

 "filters": [{

 "condition": {

 "type": "profilePropertyCondition",

 "parameterValues": {

 "propertyName" : "properties.pageViewCount.<scope>",

 "comparisonOperator" : "greaterThan",

 "propertyValueInteger" : 5

 }

 }

 }]

 }, {

 "id": "var2"

 }]

 }, variants, false, function (successfulFilters, selectedFilter) {

 if (selectedFilter) {

 document.getElementById(selectedFilter.content).style.display = '';

 }

 });

As you can see in the above code snippet, a variants array is created with two objects that associated

personalization IDs with content IDs. Then we build the personalization object that contains the two IDs

and their associated conditions (only a condition on var1 is passed in this case) as well as an option to

indicate which is the fallback variant in case no conditions are matched.

The HTML part of this example looks like this:

 <div id="variant1" style="display: none">

 You have already seen this page 5 times

 </div>

 <div id="variant2" style="display: none">

 Welcome. Please reload this page 5 times until it triggers the personalization change

 </div>

As you can see we hide the variants by default so that there is no "flashing" effect and then use the

callback function to display to variant resolve by Unomi’s personalization engine.

Apache Unomi 2.x - Documentation - 20

2.4.8. CONCLUSION

What have we achieved so far ?

• Installed a tracker in a web page

• Created a scope in which to collect the data

• Learned how to use the tracker as an NPM library

• How to view the collected events

• How to view the current visitor profile

• How to add a rule to update a profile property

• How to personalize a web page’s content based on the property updated by the rule

Of course this tutorial is just one example of what could be achieved, and hasn’t even yet introduced

more advanced notions such as profile segmentation or Groovy action scripting. The system is capable

of much more, for example by directly using its actions to integrate with third-party systems (CRM,

social networks, etc..)

2.4.9. NEXT STEPS

• Learn more about the web tracker, custom events, API, …

• Learn more about segmentation

• View some more samples

• Continue reading Unomi’s user manual to see all that is possible with this technology

3. APACHE UNOMI RECIPES AND REQUESTS

3.1. RECIPES

3.1.1. INTRODUCTION

In this section of the documentation we provide quick recipes focused on helping you achieve a specific

result with Apache Unomi.

3.1.2. ENABLING DEBUG MODE

Although the examples provided in this documentation are correct (they will work "as-is"), you might be

tempted to modify them to fit your use case, which might result in errors.

The best approach during development is to enable Apache Unomi debug mode, which will provide you

with more detailed logs about events processing.

The debug mode can be activated via the karaf SSH console (default credentials are karaf/karaf):

Apache Unomi 2.x - Documentation - 21

ubuntu@ip-10-0-3-252:~/$ ssh -p 8102 karaf@localhost

Password authentication

Password:

 __ __ ____

 / //_/____ __________ _/ __/

 / ,< / __ `/ ___/ __ `/ /_

 / /| |/ /_/ / / / /_/ / __/

 /_/ |_|__,_/_/ __,_/_/

 Apache Karaf (4.2.15)

Hit '<tab>' for a list of available commands

and '[cmd] --help' for help on a specific command.

Hit 'system:shutdown' to shutdown Karaf.

Hit '<ctrl-d>' or type 'logout' to disconnect shell from current session.

karaf@root()> log:set DEBUG org.apache.unomi.schema.impl.SchemaServiceImpl

You can then either watch the logs via your preferred logging mechanism (docker logs, log file, …) or

simply tail the logs to the terminal you used to enable debug mode.

karaf@root()> log:tail

08:55:28.128 DEBUG [qtp1422628821-128] Schema validation found 2 errors while validating against

schema: https://unomi.apache.org/schemas/json/events/view/1-0-0

08:55:28.138 DEBUG [qtp1422628821-128] Validation error: There are unevaluated properties at

following paths $.source.properties

08:55:28.140 DEBUG [qtp1422628821-128] Validation error: There are unevaluated properties at

following paths $.source.itemId, $.source.itemType, $.source.scope, $.source.properties

08:55:28.142 ERROR [qtp1422628821-128] An event was rejected - switch to DEBUG log level for more

information

The example above shows schema validation failure at the $.source.properties path. Note that the

validation will output one log line for the exact failing path and a log line for its parent, therefore to find

the source of a schema validation issue it’s best to start from the top.

3.1.3. HOW TO READ A PROFILE

The simplest way to retrieve profile data for the current profile is to simply send a request to the

/cxs/context.json endpoint. However you will need to send a body along with that request. Here’s an

example:

Here is an example that will retrieve all the session and profile properties, as well as the profile’s

segments and scores

Apache Unomi 2.x - Documentation - 22

curl -X POST http://localhost:8181/cxs/context.json?sessionId=1234 \

-H "Content-Type: application/json" \

--data-raw '{

 "source": {

 "itemId":"homepage",

 "itemType":"page",

 "scope":"example"

 },

 "requiredProfileProperties":["*"],

 "requiredSessionProperties":["*"],

 "requireSegments":true,

 "requireScores":true

}'

The requiredProfileProperties and requiredSessionProperties are properties that take an array of

property names that should be retrieved. In this case we use the wildcard character '*' to say we want to

retrieve all the available properties. The structure of the JSON object that you should send is a JSON-

serialized version of the ContextRequest Java class.

Note that it is also possible to access a profile’s data through the /cxs/profiles/ endpoint but that really

should be reserved to administrative purposes. All public accesses should always use the

/cxs/context.json endpoint for consistency and security.

3.1.4. HOW TO UPDATE A PROFILE FROM THE PUBLIC INTERNET

Before we get into how to update a profile directly from a request coming from the public internet, we’ll

quickly talk first about how NOT to do it, because we often see users using the following anti-patterns.

HOW NOT TO UPDATE A PROFILE FROM THE PUBLIC INTERNET

Please avoid using the /cxs/profile endpoint. This endpoint was initially the only way to update a profile

but it has multiple issues:

• it requires authenticated access. The temptation can be great to use this endpoint because it is

simple to access but the risk is that developers might include the credentials to access it in non-

secure parts of code such as client-side code. Since there is no difference between this endpoint and

any other administration-focused endpoints, attackers could easily re-use stolen credentials to

wreak havock on the whole platform.

• No history of profile modifications is kept: this can be a problem for multiple reasons: you might

want to keep an trail of profile modifications, or even a history of profile values in case you want to

understand how a profile property was modified.

• Even when protected using some kind of proxy, potentially the whole profile properties might be

modified, including ones that you might not want to be overriden.

RECOMMENDED WAYS TO UPDATE A PROFILE

Instead you can use the following solutions to update profiles:

Apache Unomi 2.x - Documentation - 23

http://unomi.apache.org/unomi-api/apidocs/org/apache/unomi/api/ContextRequest.html

• (Preferred) Use you own custom event(s) to send data you want to be inserted in a profile, and use

rules to map the event data to the profile. This is simpler than it sounds, as usually all it requires is

setting up a simple rule, defining the corresponding JSON schema and you’re ready to update

profiles using events.

• Use the protected built-in "updateProperties" event. This event is designed to be used for

administrative purposes only. Again, prefer the custom events solution because as this is a

protected event it will require sending the Unomi key as a request header, and as Unomi only

supports a single key for the moment it could be problematic if the key is intercepted. But at least

by using an event you will get the benefits of auditing and historical property modification tracing.

Let’s go into more detail about the preferred way to update a profile. Let’s consider the following

example of a rule:

Apache Unomi 2.x - Documentation - 24

curl -X POST http://localhost:8181/cxs/rules \

--user karaf:karaf \

-H "Content-Type: application/json" \

--data-raw '{

 "metadata": {

 "id": "setContactInfo",

 "name": "Copy the received contact info to the current profile",

 "description": "Copies the contact info received in a custom event called 'contactInfoSubmitted' to

the current profile"

 },

 "raiseEventOnlyOnceForSession": false,

 "condition": {

 "type": "eventTypeCondition",

 "parameterValues": {

 "eventTypeId": "contactInfoSubmitted"

 }

 },

 "actions": [

 {

 "type": "setPropertyAction",

 "parameterValues": {

 "setPropertyName": "properties(firstName)",

 "setPropertyValue": "eventProperty::properties(firstName)",

 "setPropertyStrategy": "alwaysSet"

 }

 },

 {

 "type": "setPropertyAction",

 "parameterValues": {

 "setPropertyName": "properties(lastName)",

 "setPropertyValue": "eventProperty::properties(lastName)",

 "setPropertyStrategy": "alwaysSet"

 }

 },

 {

 "type": "setPropertyAction",

 "parameterValues": {

 "setPropertyName": "properties(email)",

 "setPropertyValue": "eventProperty::properties(email)",

 "setPropertyStrategy": "alwaysSet"

 }

 }

]

}'

What this rule does is that it listen for a custom event (events don’t need any registration, you can

simply start sending them to Apache Unomi whenever you like) of type 'contactInfoSubmitted' and it

will search for properties called 'firstName', 'lastName' and 'email' and copy them over to the profile

with corresponding property names. You could of course change any of the property names to find your

needs. For example you might want to prefix the profile properties with the source of the event, such as

'mobileApp:firstName'.

Now that our rule is defined, the next step is to create a scope and a JSON Schema corresponding to the

event to be submitted.

Apache Unomi 2.x - Documentation - 25

We will start by creating a scope called "example" scope:

curl --location --request POST 'http://localhost:8181/cxs/scopes' \

-u 'karaf:karaf' \

--header 'Content-Type: application/json' \

--data-raw '{

"itemId": "example",

"itemType": "scope"

}'

The next step consist in creating a JSON Schema to validate our event.

curl --location --request POST 'http://localhost:8181/cxs/jsonSchema' \

-u 'karaf:karaf' \

--header 'Content-Type: application/json' \

--data-raw '{

 "$id": "https://unomi.apache.org/schemas/json/events/contactInfoSubmitted/1-0-0",

 "$schema": "https://json-schema.org/draft/2019-09/schema",

 "self": {

 "vendor": "org.apache.unomi",

 "name": "contactInfoSubmitted",

 "format": "jsonschema",

 "target": "events",

 "version": "1-0-0"

 },

 "title": "contactInfoSubmittedEvent",

 "type": "object",

 "allOf": [{ "$ref": "https://unomi.apache.org/schemas/json/event/1-0-0" }],

 "properties": {

 "source" : {

 "$ref" : "https://unomi.apache.org/schemas/json/item/1-0-0"

 },

 "target" : {

 "$ref" : "https://unomi.apache.org/schemas/json/item/1-0-0"

 },

 "properties": {

 "type": "object",

 "properties": {

 "firstName": {

 "type": ["null", "string"]

 },

 "lastName": {

 "type": ["null", "string"]

 },

 "email": {

 "type": ["null", "string"]

 }

 }

 }

 },

 "unevaluatedProperties": false

}'

Apache Unomi 2.x - Documentation - 26

You can notice the following in the above schema:

• We are creating a schema of type "events" ("self.target" equals "events")

• The name of this schema is "contactInfoSubmitted", this MUST match the value of the "eventType"

field in the event itself (below)

• To simplify our schema declaration, we’re referring to an already existing schema

(https://unomi.apache.org/schemas/json/item/1-0-0) to validate the "source" and "target" properties.

Apache Unomi ships with a set of predefined JSON Schemas, detailed here: https://github.com/

apache/unomi/tree/master/extensions/json-schema/services/src/main/resources/META-INF/cxs/

schemas.

• "unevaluatedProperties": false indicates that the event should be rejected if it contains any

additional metadata.

Finally, send the contactInfoSubmitted event using a request similar to this one:

curl -X POST http://localhost:8181/cxs/eventcollector \

-H "Content-Type: application/json" \

--data-raw '{

 "sessionId" : "1234",

 "events":[

 {

 "eventType":"contactInfoSubmitted",

 "scope": "example",

 "source":{

 "itemType": "site",

 "scope": "example",

 "itemId": "mysite"

 },

 "target":{

 "itemType": "form",

 "scope": "example",

 "itemId": "contactForm"

 },

 "properties" : {

 "firstName": "John",

 "lastName": "Doe",

 "email": "john.doe@acme.com"

 }

 }

]

}'

The event we just submitted can be retrieved using the following request:

Apache Unomi 2.x - Documentation - 27

https://unomi.apache.org/schemas/json/item/1-0-0
https://github.com/apache/unomi/tree/master/extensions/json-schema/services/src/main/resources/META-INF/cxs/schemas
https://github.com/apache/unomi/tree/master/extensions/json-schema/services/src/main/resources/META-INF/cxs/schemas
https://github.com/apache/unomi/tree/master/extensions/json-schema/services/src/main/resources/META-INF/cxs/schemas

curl -X POST http://localhost:8181/cxs/events/search \

--user karaf:karaf \

-H "Content-Type: application/json" \

--data-raw '{

 "offset" : 0,

 "limit" : 20,

 "condition" : {

 "type": "eventPropertyCondition",

 "parameterValues" : {

 "propertyName" : "properties.firstName",

 "comparisonOperator" : "equals",

 "propertyValue" : "John"

 }

 }

}'

TROUBLESHOOTING COMMON ERRORS

There could be two types of common errors while customizing the above requests: * The schema is

invalid * The event is invalid

While first submitting the schema during its creation, Apache Unomi will validate it is syntaxically

correct (JSON) but will not perform any further validation. Since the schema will be processed for the

first time when events are submitted, errors might be noticeable at that time.

Those errors are usually self-explanatory, such as this one pointing to an incorrect lcoation for the

"firstName" keyword:

09:35:56.573 WARN [qtp1421852915-83] Unknown keyword firstName - you should define your own

Meta Schema. If the keyword is irrelevant for validation, just use a NonValidationKeyword

If an event is invalid, the logs will contain details about the part of the event that did not validate against

the schema. In the example below, an extra property "abcd" was added to the event:

12:27:04.269 DEBUG [qtp1421852915-481] Schema validation found 1 errors while validating against

schema: https://unomi.apache.org/schemas/json/events/contactInfoSubmitted/1-0-0

12:27:04.272 DEBUG [qtp1421852915-481] Validation error: There are unevaluated properties at

following paths $.properties.abcd

12:27:04.273 ERROR [qtp1421852915-481] An event was rejected - switch to DEBUG log level for more

information

3.1.5. HOW TO SEARCH FOR PROFILE EVENTS

Sometimes you want to retrieve events for a known profile. You will need to provide a query in the body

of the request that looks something like this (and documentation is available in the REST API) :

Apache Unomi 2.x - Documentation - 28

https://unomi.apache.org/rest-api-doc/#1768188821

curl -X POST http://localhost:8181/cxs/events/search \

--user karaf:karaf \

-H "Content-Type: application/json" \

--data-raw '{

 "offset" : 0,

 "limit" : 20,

 "condition" : {

 "type": "eventPropertyCondition",

 "parameterValues" : {

 "propertyName" : "profileId",

 "comparisonOperator" : "equals",

 "propertyValue" : "PROFILE_ID"

 }

 }

}'

where PROFILE_ID is a profile identifier. This will indeed retrieve all the events for a given profile.

3.1.6. HOW TO CREATE A NEW RULE

There are basically two ways to create a new rule :

• Using the REST API

• Packaging it as a predefined rule in a plugin

In both cases the JSON structure for the rule will be exactly the same, and in most scenarios it will be

more interesting to use the REST API to create and manipulate rules, as they don’t require any

development or deployments on the Apache Unomi server.

Apache Unomi 2.x - Documentation - 29

curl -X POST http://localhost:8181/cxs/rules \

--user karaf:karaf \

-H "Content-Type: application/json" \

--data-raw '{

 "metadata": {

 "id": "exampleEventCopy",

 "name": "Example Copy Event to Profile",

 "description": "Copy event properties to profile properties"

 },

 "condition": {

 "type": "eventTypeCondition",

 "parameterValues": {

 "eventTypeId" : "myEvent"

 }

 },

 "actions": [

 {

 "parameterValues": {

 },

 "type": "allEventToProfilePropertiesAction"

 }

]

}'

The above rule will be executed if the incoming event is of type myEvent and will simply copy all the

properties contained in the event to the current profile.

3.1.7. HOW TO SEARCH FOR PROFILES

In order to search for profiles you will have to use the /cxs/profiles/search endpoint that requires a

Query JSON structure. Here’s an example of a profile search with a Query object:

Apache Unomi 2.x - Documentation - 30

curl -X POST http://localhost:8181/cxs/profiles/search \

--user karaf:karaf \

-H "Content-Type: application/json" \

--data-raw '{

 "text" : "unomi",

 "offset" : 0,

 "limit" : 10,

 "sortby" : "properties.lastName:asc,properties.firstName:desc",

 "condition" : {

 "type" : "booleanCondition",

 "parameterValues" : {

 "operator" : "and",

 "subConditions" : [

 {

 "type": "profilePropertyCondition",

 "parameterValues": {

 "propertyName": "properties.leadAssignedTo",

 "comparisonOperator": "exists"

 }

 },

 {

 "type": "profilePropertyCondition",

 "parameterValues": {

 "propertyName": "properties.lastName",

 "comparisonOperator": "exists"

 }

 }

]

 }

 }

}'

In the above example, you search for all the profiles that have the leadAssignedTo and lastName

properties and that have the unomi value anywhere in their profile property values. You are also

specifying that you only want 10 results beginning at offset 0. The results will be also sorted in

alphabetical order for the lastName property value, and then by reverse alphabetical order for the

firstName property value.

As you can see, queries can be quite complex. Please remember that the more complex the more

resources it will consume on the server and potentially this could affect performance.

3.1.8. GETTING / UPDATING CONSENTS

You can find information on how to retrieve or create/update consents in the Consent API section.

3.1.9. HOW TO SEND A LOGIN EVENT TO UNOMI

Tracking logins must be done carefully with Unomi. A login event is considered a "privileged" event and

therefore for not be initiated from the public internet. Ideally user authentication should always be

validated by a trusted third- party even if it is a well-known social platform such as Facebook or Twitter.

Basically what should NEVER be done:

Apache Unomi 2.x - Documentation - 31

1. Login to a social platform

2. Call back to the originating page

3. Send a login event to Unomi from the page originating the login in step 1

The problem with this, is that any attacker could simply directly call step 3 without any kind of security.

Instead the flow should look something like this:

1. Login to a social platform

2. Call back to a special secured system that performs an server-to-server call to send the login event

to Apache Unomi using the Unomi key.

For simplicity reasons, in our login example, the first method is used, but it really should never be done

like this in production because of the aforementioned security issues. The second method, although a

little more involved, is much preferred.

When sending a login event, you can setup a rule that can check a profile property to see if profiles can

be merged on an universal identifier such as an email address.

In our login sample we provide an example of such a rule. You can find it here:

https://github.com/apache/unomi/blob/master/samples/login-integration/src/main/resources/META-INF/

cxs/rules/exampleLogin.json

As you can see in this rule, we call an action called :

mergeProfilesOnPropertyAction

with as a parameter value the name of the property on which to perform the merge (the email). What

this means is that upon successful login using an email, Unomi will look for other profiles that have the

same email and merge them into a single profile. Because of the merge, this should only be done for

authenticated profiles, otherwise this could be a security issue since it could be a way to load data from

other profiles by merging their data !

3.1.10. WHAT PROFILE ALIASES ARE AND HOW TO USE THEM

Profile aliases make it possible to reference profiles using multiple identifiers. The profile alias object

basically contains a link between the alias ID and the profile ID. The itemId of a profile alias is the actual

alias ID, which the profileID field contains the reference to the aliased profile.

WHAT THEY ARE

Apache Unomi 2.x - Documentation - 32

https://github.com/apache/unomi/blob/master/samples/login-integration/src/main/resources/META-INF/cxs/rules/exampleLogin.json
https://github.com/apache/unomi/blob/master/samples/login-integration/src/main/resources/META-INF/cxs/rules/exampleLogin.json

Profile aliases:

• Make it possible to lookup profiles by main (Unomi) ID or by any other alias ID

• Aliases are just IDs stored in a dedicated index

• A profile may have an unlimited number of aliases attached to it.

HOW TO USE THEM

Here are different use cases for profile aliases:

• Connect different systems to Unomi such as a CRM, CMS and native mobile app that all have their

own iD for a single customer

Apache Unomi 2.x - Documentation - 33

• Merging profiles when a visitor is identified

• Adding new IDs at a later time

EXAMPLE

Here is an example of multiple external aliases pointing to a single Unomi profile

INTERACTIONS WITH MERGING

Profile merges have been modified to use aliases starting Unomi 2

Upon merge:

• Properties are copied to the master profile as before

• An alias is created for the "master" profile with the ID of the merged profile

• Merged profiles are now deleted

• "mergedWith" property is no longer used since we deleted the merged profiles

API

/context.json and /eventcollector will now look up profiles by profile ID or aliases from the same cookie

(context-profile-id) or body parameters (profileId)

Verb Path Description

GET /cxs/profiles/PROFILE_ID_OR_ALI

AS

Retrieves a profile by ID or Alias

ID (useful if an external system

wants to get a profile)

GET /cxs/profiles/PROFILE_ID/aliases Get all the aliases for a profile

POST /cxs/profiles/PROFILE_ID/aliases/

ALIAS_ID

Add an alias to a profile

Apache Unomi 2.x - Documentation - 34

Verb Path Description

DELETE /cxs/profiles/PROFILE_ID/aliases/

ALIAS_ID

Remove an alias from a profile

3.2. REQUEST EXAMPLES

3.2.1. RETRIEVING YOUR FIRST CONTEXT

You can retrieve a context using curl like this :

curl http://localhost:8181/cxs/context.js?sessionId=1234

This will retrieve a JavaScript script that contains a cxs object that contains the context with the current

user profile, segments, scores as well as functions that makes it easier to perform further requests (such

as collecting events using the cxs.collectEvents() function).

3.2.2. RETRIEVING A CONTEXT AS A JSON OBJECT.

If you prefer to retrieve a pure JSON object, you can simply use a request formed like this:

curl http://localhost:8181/cxs/context.json?sessionId=1234

3.2.3. ACCESSING PROFILE PROPERTIES IN A CONTEXT

By default, in order to optimize the amount of data sent over the network, Apache Unomi will not send

the content of the profile or session properties. If you need this data, you must send a JSON object to

configure the resulting output of the context.js(on) servlet.

Here is an example that will retrieve all the session and profile properties, as well as the profile’s

segments and scores

Apache Unomi 2.x - Documentation - 35

curl -X POST http://localhost:8181/cxs/context.json?sessionId=1234 \

-H "Content-Type: application/json" \

-d @- <<'EOF'

{

 "source": {

 "itemId":"homepage",

 "itemType":"page",

 "scope":"example"

 },

 "requiredProfileProperties":["*"],

 "requiredSessionProperties":["*"],

 "requireSegments":true,

 "requireScores":true

}

EOF

The requiredProfileProperties and requiredSessionProperties are properties that take an array of

property names that should be retrieved. In this case we use the wildcard character '*' to say we want to

retrieve all the available properties. The structure of the JSON object that you should send is a JSON-

serialized version of the ContextRequest Java class.

3.2.4. SENDING EVENTS USING THE CONTEXT SERVLET

At the same time as you are retrieving the context, you can also directly send events in the

ContextRequest object as illustrated in the following example:

Apache Unomi 2.x - Documentation - 36

http://unomi.apache.org/unomi-api/apidocs/org/apache/unomi/api/ContextRequest.html

curl -X POST http://localhost:8181/cxs/context.json?sessionId=1234 \

-H "Content-Type: application/json" \

-d @- <<'EOF'

{

 "source":{

 "itemId":"homepage",

 "itemType":"page",

 "scope":"example"

 },

 "events":[

 {

 "eventType":"view",

 "scope": "example",

 "source":{

 "itemType": "site",

 "scope":"example",

 "itemId": "mysite"

 },

 "target":{

 "itemType":"page",

 "scope":"example",

 "itemId":"homepage",

 "properties":{

 "pageInfo":{

 "referringURL":"https://apache.org/"

 }

 }

 }

 }

]

}

EOF

Upon received events, Apache Unomi will execute all the rules that match the current context, and

return an updated context. This way of sending events is usually used upon first loading of a page. If you

want to send events after the page has finished loading you could either do a second call and get an

updating context, or if you don’t need the context and want to send events in a network optimal way you

can use the eventcollector servlet (see below).

3.2.5. SENDING EVENTS USING THE EVENTCOLLECTOR SERVLET

If you only need to send events without retrieving a context, you should use the eventcollector servlet

that is optimized respond quickly and minimize network traffic. Here is an example of using this servlet:

Apache Unomi 2.x - Documentation - 37

curl -X POST http://localhost:8181/cxs/eventcollector \

-H "Content-Type: application/json" \

-d @- <<'EOF'

{

 "sessionId" : "1234",

 "events":[

 {

 "eventType":"view",

 "scope": "example",

 "source":{

 "itemType": "site",

 "scope":"example",

 "itemId": "mysite"

 },

 "target":{

 "itemType":"page",

 "scope":"example",

 "itemId":"homepage",

 "properties":{

 "pageInfo":{

 "referringURL":"https://apache.org/"

 }

 }

 }

 }

]

}

EOF

Note that the eventcollector executes the rules but does not return a context. If is generally used after a

page is loaded to send additional events.

3.2.6. WHERE TO GO FROM HERE

• You can find more useful Apache Unomi URLs that can be used in the same way as the above

examples.

• Read the Twitter sample documentation that contains a detailed example of how to integrate with

Apache Unomi.

4. CONFIGURATION

4.1. CENTRALIZED CONFIGURATION

Apache Unomi uses a centralized configuration file that contains both system properties and

configuration properties. These settings are then fed to the OSGi and other configuration files using

placeholder that look something like this:

contextserver.publicAddress=${org.apache.unomi.cluster.public.address:-http://localhost:8181}

contextserver.internalAddress=${org.apache.unomi.cluster.internal.address:-https://localhost:9443}

Apache Unomi 2.x - Documentation - 38

Default values are stored in a file called $MY_KARAF_HOME/etc/custom.system.properties but you

should never modify this file directly, as an override mechanism is available. Simply create a file called:

unomi.custom.system.properties

and put your own property values in their to override the defaults OR you can use environment

variables to also override the values in the $MY_KARAF_HOME/etc/custom.system.properties. See the

next section for more information about that.

4.2. CHANGING THE DEFAULT CONFIGURATION USING
ENVIRONMENT VARIABLES (I.E. DOCKER CONFIGURATION)

You might want to use environment variables to change the default system configuration, especially if

you intend to run Apache Unomi inside a Docker container. You can find the list of all the environment

variable names in the following file:

https://github.com/apache/unomi/blob/master/package/src/main/resources/etc/custom.system.properties

If you are using Docker Container, simply pass the environment variables on the docker command line

or if you are using Docker Compose you can put the environment variables in the docker-compose.yml

file.

If you want to "save" the environment values in a file, you can use the bin/setenv(.bat) to setup the

environment variables you want to use.

4.3. CHANGING THE DEFAULT CONFIGURATION USING
PROPERTY FILES

If you want to change the default configuration using property files instead of environment variables,

you can perform any modification you want in the

$MY_KARAF_HOME/etc/unomi.custom.system.properties file.

By default this file does not exist and is designed to be a file that will contain only your custom

modifications to the default configuration.

For example, if you want to change the HTTP ports that the server is listening on, you will need to create

the following lines in the $MY_KARAF_HOME/etc/unomi.custom.system.properties (and create it if you

haven’t yet) file:

org.osgi.service.http.port.secure=9443

org.osgi.service.http.port=8181

If you change these ports, also make sure you adjust the following settings in the same file :

Apache Unomi 2.x - Documentation - 39

https://github.com/apache/unomi/blob/master/package/src/main/resources/etc/custom.system.properties

org.apache.unomi.cluster.public.address=http://localhost:8181

org.apache.unomi.cluster.internal.address=https://localhost:9443

If you need to specify an ElasticSearch cluster name, or a host and port that are different than the

default, it is recommended to do this BEFORE you start the server for the first time, or you will loose all

the data you have stored previously.

You can use the following properties for the ElasticSearch configuration

org.apache.unomi.elasticsearch.cluster.name=contextElasticSearch

The elasticsearch.adresses may be a comma seperated list of host names and ports such as

hostA:9200,hostB:9200

Note: the port number must be repeated for each host.

org.apache.unomi.elasticsearch.addresses=localhost:9200

4.4. SECURED EVENTS CONFIGURATION

Apache Unomi secures some events by default. It comes out of the box with a default configuration that

you can adjust by using the centralized configuration file override in

$MY_KARAF_HOME/etc/unomi.custom.system.properties

You can find the default configuration in the following file:

$MY_KARAF_HOME/etc/custom.system.properties

The properties start with the prefix : org.apache.unomi.thirdparty.* and here are the default values :

org.apache.unomi.thirdparty.provider1.key=${env:UNOMI_THIRDPARTY_PROVIDER1_KEY:-

670c26d1cc413346c3b2fd9ce65dab41}

org.apache.unomi.thirdparty.provider1.ipAddresses=${env:UNOMI_THIRDPARTY_PROVIDER1_IPAD

DRESSES:-127.0.0.1,::1}

org.apache.unomi.thirdparty.provider1.allowedEvents=${env:UNOMI_THIRDPARTY_PROVIDER1_A

LLOWEDEVENTS:-login,updateProperties}

The events set in allowedEvents will be secured and will only be accepted if the call comes from the

specified IP address, and if the secret-key is passed in the X-Unomi-Peer HTTP request header. The "env:"

part means that it will attempt to read an environment variable by that name, and if it’s not found it will

default to the value after the ":-" marker.

It is now also possible to use IP address ranges instead of having to list all valid IP addresses for event

sources. This is very useful when working in cluster deployments where servers may be added or

removed dynamically. In order to support this Apache Unomi uses a library called IPAddress that

supports IP ranges and subnets. Here is an example of how to setup a range:

Apache Unomi 2.x - Documentation - 40

https://seancfoley.github.io/IPAddress/#_Toc525135541

org.apache.unomi.thirdparty.provider1.ipAddresses=${env:UNOMI_THIRDPARTY_PROVIDER1_IPAD

DRESSES:-192.168.1.1-100,::1}

The above configuration will allow a range of IP addresses between 192.168.1.1 and 192.168.1.100 as

well as the IPv6 loopback.

Here’s another example using the subnet format:

org.apache.unomi.thirdparty.provider1.ipAddresses=${env:UNOMI_THIRDPARTY_PROVIDER1_IPAD

DRESSES:-1.2.0.0/16,::1}

The above configuration will allow all addresses starting with 1.2 as well as the IPv6 loopback address.

Wildcards may also be used:

org.apache.unomi.thirdparty.provider1.ipAddresses=${env:UNOMI_THIRDPARTY_PROVIDER1_IPAD

DRESSES:-1.2.*.*,::1}

The above configuration is exactly the same as the previous one.

More advanced ranges and subnets can be used as well, please refer to the IPAddress library

documentation for details on how to format them.

If you want to add another provider you will need to add them manually in the following file (and make

sure you maintain the changes when upgrading) :

$MY_KARAF_HOME/etc/org.apache.unomi.thirdparty.cfg

Usually, login events, which operate on profiles and do merge on protected properties, must be secured.

For each trusted third party server, you need to add these 3 lines :

thirdparty.provider1.key=secret-key

thirdparty.provider1.ipAddresses=127.0.0.1,::1

thirdparty.provider1.allowedEvents=login,updateProperties

4.5. INSTALLING THE MAXMIND GEOIPLITE2 IP LOOKUP
DATABASE

Apache Unomi requires an IP database in order to resolve IP addresses to user location. The GeoLite2

database can be downloaded from MaxMind here : http://dev.maxmind.com/geoip/geoip2/geolite2/

Simply download the GeoLite2-City.mmdb file into the "etc" directory.

Apache Unomi 2.x - Documentation - 41

https://seancfoley.github.io/IPAddress
http://dev.maxmind.com/geoip/geoip2/geolite2/

4.6. INSTALLING GEONAMES DATABASE

Apache Unomi includes a geocoding service based on the geonames database (

http://www.geonames.org/). It can be used to create conditions on countries or cities.

In order to use it, you need to install the Geonames database into . Get the "allCountries.zip" database

from here : http://download.geonames.org/export/dump/

Download it and put it in the "etc" directory, without unzipping it. Edit

$MY_KARAF_HOME/etc/unomi.custom.system.properties and set

org.apache.unomi.geonames.forceImport to true, import should start right away. Otherwise, import

should start at the next startup. Import runs in background, but can take about 15 minutes. At the end,

you should have about 4 million entries in the geonames index.

4.7. REST API SECURITY

The Apache Unomi Context Server REST API is protected using JAAS authentication and using Basic or

Digest HTTP auth. By default, the login/password for the REST API full administrative access is

"karaf/karaf".

The generated package is also configured with a default SSL certificate. You can change it by following

these steps :

Replace the existing keystore in $MY_KARAF_HOME/etc/keystore by your own certificate :

http://wiki.eclipse.org/Jetty/Howto/Configure_SSL

Update the keystore and certificate password in

$MY_KARAF_HOME/etc/unomi.custom.system.properties file :

org.ops4j.pax.web.ssl.keystore=${env:UNOMI_SSL_KEYSTORE:-${karaf.etc}/keystore}

org.ops4j.pax.web.ssl.password=${env:UNOMI_SSL_PASSWORD:-changeme}

org.ops4j.pax.web.ssl.keypassword=${env:UNOMI_SSL_KEYPASSWORD:-changeme}

You should now have SSL setup on Karaf with your certificate, and you can test it by trying to access it

on port 9443.

Changing the default Karaf password can be done by modifying the

org.apache.unomi.security.root.password in the

$MY_KARAF_HOME/etc/unomi.custom.system.properties file

4.8. SCRIPTING SECURITY

4.8.1. MULTI-LAYER SCRIPTING FILTERING SYSTEM

The scripting security system is multi-layered.

Apache Unomi 2.x - Documentation - 42

http://www.geonames.org/
http://download.geonames.org/export/dump/
http://wiki.eclipse.org/Jetty/Howto/Configure_SSL

For requests coming in through the /cxs/context.json endpoint, the following flow is used to secure

incoming requests:

Conditions submitted through the context.json public endpoint are first sanitized, meaning that any

scripting directly injected is removed. However, as conditions can use sub conditions that include

scripting, only the first directly injected layer of scripts are removed.

The second layer is the expression filtering system, that uses an allow-listing mechanism to only accept

pre-vetted expressions (through configuration and deployment on the server side). Any unrecognized

expression will not be accepted.

Finally, once the script starts executing in the scripting engine, a filtering class loader will only let the

script access classes that have been allowed.

This multi-layered approach makes it possible to retain a high level of security even if one layer is poorly

configured or abused.

For requests coming in through the secure APIs such as rules, only the condition sanitizing step is

skipped, otherwise the rest of the filtering system is the same.

4.8.2. SCRIPTS AND EXPRESSIONS

Apache Unomi allows using different types of expressions in the following subsystems:

Apache Unomi 2.x - Documentation - 43

• context.json filters and personalization queries

• rule conditions and actions parameters

Apache Unomi uses two integrated scripting languages to provide this functionality: OGNL and MVEL.

OGNL is deprecated and is now disabled by default since 1.5.2 as it is little used (and replaced by better

performing hardcoded property lookups). MVEL is more commonly used in rule actions as in the

following example:

From https://github.com/apache/unomi/blob/unomi-1.5.x/plugins/baseplugin/src/main/resources/META-

INF/cxs/rules/sessionAssigned.json:

{

 "metadata": {

 "id": "_ajhg9u2s5_sessionAssigned",

 "name": "Session assigned to a profile",

 "description": "Update profile visit information",

 "readOnly":true

 },

 "condition": {

 "type": "booleanCondition",

 "parameterValues": {

 "subConditions":[

 {

 "type": "eventTypeCondition",

 "parameterValues": {

 "eventTypeId": "sessionCreated"

 }

 },

 {

 "type": "eventTypeCondition",

 "parameterValues": {

 "eventTypeId": "sessionReassigned"

 }

 }

],

 "operator":"or"

 }

 },

 "actions": [

 {

 "parameterValues": {

 "setPropertyName": "properties.previousVisit",

 "setPropertyValue": "profileProperty::lastVisit",

 "storeInSession": false

 },

 "type": "setPropertyAction"

 },

 {

 "parameterValues": {

 "setPropertyName": "properties.lastVisit",

Apache Unomi 2.x - Documentation - 44

https://github.com/apache/unomi/blob/unomi-1.5.x/plugins/baseplugin/src/main/resources/META-INF/cxs/rules/sessionAssigned.json
https://github.com/apache/unomi/blob/unomi-1.5.x/plugins/baseplugin/src/main/resources/META-INF/cxs/rules/sessionAssigned.json

 "setPropertyValue": "now",

 "storeInSession": false

 },

 "type": "setPropertyAction"

 },

 {

 "parameterValues": {

 "setPropertyName": "properties.nbOfVisits",

 "setPropertyValue": "script::profile.properties.?nbOfVisits != null ? (profile.properties.nbOfVisits

+ 1) : 1",

 "storeInSession": false

 },

 "type": "setPropertyAction"

 }

]

}

As we see in the above example, we use an MVEL script with the setPropertyAction to set a property

value. Starting with version 1.5.2, any expression use in rules MUST be allow-listed.

OGNL was previously used wherever a parameter could be used, but MVEL could only be used with a

“script::” prefix. Starting with version 1.5.2 OGNL will no longer be allowed and is replaced by a

compatible “hardcoded” property lookup system, while MVEL requires allow-listing the scripts that are

to be used.

By default, Apache Unomi comes with some built-in allowed expressions that cover all the internal uses

cases.

Default allowed MVEL expressions (from https://github.com/apache/unomi/blob/unomi-

1.5.x/plugins/baseplugin/src/main/resources/META-INF/cxs/expressions/mvel.json) :

[

 "\\Q'systemProperties.goals.'+goalId+'TargetReached'\\E",

 "\\Q'now-'+since+'d'\\E",

 "\\Q'scores.'+scoringPlanId\\E",

 "\\QminimumDuration*1000\\E",

 "\\QmaximumDuration*1000\\E",

 "\\Qprofile.properties.?nbOfVisits != null ? (profile.properties.nbOfVisits + 1) : 1\\E",

 "\\Qsession != null ? session.size + 1 : 0\\E",

 "\\Q'properties.optimizationTest_'+event.target.itemId\\E",

 "\\Qevent.target.properties.variantId\\E",

 "\\Qprofile.properties.?systemProperties.goals.\\E[\\w_]*\\QReached != null ?

(profile.properties.systemProperties.goals.\\E[\\w_]*\\QReached) : 'now'\\E",

 "\\Qprofile.properties.?systemProperties.campaigns.\\E[\\w_]*\\QEngaged != null ?

(profile.properties.systemProperties.campaigns.\\E[\\w_]*\\QEngaged) : 'now'\\E"

]

If you require or are already using custom expressions, you should add a plugin to Apache Unomi to

allow for this. The choice of a plugin was to make sure only system administrators and solution

developers could provide such a list, avoiding the possibility to provide it through an API call or another

security sensitive deployment mechanism.

Apache Unomi 2.x - Documentation - 45

https://github.com/apache/unomi/blob/unomi-1.5.x/plugins/baseplugin/src/main/resources/META-INF/cxs/expressions/mvel.json
https://github.com/apache/unomi/blob/unomi-1.5.x/plugins/baseplugin/src/main/resources/META-INF/cxs/expressions/mvel.json

There is another way of allow-listing expressions through configuration, see the “scripting configuration

parameters” section below.

Procedure to add allowed expressions:

1. Create a new Apache Unomi plugin project.

2. Create a JSON file in src/main/resources/META-INF/cxs/expressions/mvel.json with an array of

regular expressions that will contain the allowed expressions.

3. Build the project and deploy it to Apache Unomi

Warning: Do not make regular expressions too general. They should actually be as specific as possible to

avoid potential injection of malicious code.

4.8.3. SCRIPTING EXPRESSION FILTERING CONFIGURATION PARAMETERS

Alongside with the allow-listing technology, there are new configuration parameters to control the

security of the scripting engines:

Apache Unomi 2.x - Documentation - 46

These parameters control the list of classes that are allowed or forbidden when executing

expressions.

org.apache.unomi.scripting.allow=${env:UNOMI_ALLOW_SCRIPTING_CLASSES:-

org.apache.unomi.api.Event,org.apache.unomi.api.Profile,org.apache.unomi.api.Session,org.apache

.unomi.api.Item,org.apache.unomi.api.CustomItem,ognl.*,java.lang.Object,java.util.Map,java.util.Ha

shMap,java.lang.Integer,org.mvel2.*}

org.apache.unomi.scripting.forbid=${env:UNOMI_FORBID_SCRIPTING_CLASSES:-}

This parameter controls the whole expression filtering system. It is not recommended to turn it

off. The main reason to turn it off would be to check if it is interfering with something, but it should

always be active in production.

org.apache.unomi.scripting.filter.activated=${env:UNOMI_SCRIPTING_FILTER_ACTIVATED:-true}

The following parameters control the filtering using regular expressions for each scripting sub-

system.

The "collections" parameter tells the expression filtering system which configurations to expect. By

default only MVEL and/or OGNL are accepted values, but in the future these might be replaced by

new scripting sub-systems.

org.apache.unomi.scripting.filter.collections=${env:UNOMI_SCRIPTING_FILTER_COLLECTIONS:-

mvel,ognl}

For each scripting sub-system, there is an allow and a forbid property that reference a .json files,

you can either edit this files or reference your own file directly in the following config.

Note: You can add new expressions to the "allow" file, although it is better to add them inside any

plugins you may be adding.

This configuration is only designed to compensate for the cases where something was not

properly designed or to deal with compatibility issues.

Just be VERY careful to make your patterns AS SPECIFIC AS POSSIBLE in order to avoid

introducing a way to abuse the expression filtering.

Note: It is NOT recommended to change the built-in "forbid" value unless you are having issues

with its value.

Note: mvel-allow.json contains an empty array: [], this mean nothing is allowed, so far.

If you want to allow all expression, just remove the property

org.apache.unomi.scripting.filter.mvel.allow, but this is not recommended

It's better to list your expressions, and provide them in the mvel-allow.json file

example: ["\\Qsession.size + 1\\E"]

org.apache.unomi.scripting.filter.mvel.allow=${env:UNOMI_SCRIPTING_FILTER_MVEL_ALLOW:-

${karaf.etc}/mvel-allow.json}

org.apache.unomi.scripting.filter.mvel.forbid=${env:UNOMI_SCRIPTING_FILTER_MVEL_FORBID:-

${karaf.etc}/mvel-forbid.json}

org.apache.unomi.scripting.filter.ognl.allow=${env:UNOMI_SCRIPTING_FILTER_OGNL_ALLOW:-

${karaf.etc}/ognl-allow.json}

org.apache.unomi.scripting.filter.ognl.forbid=${env:UNOMI_SCRIPTING_FILTER_OGNL_FORBID:-

${karaf.etc}/ognl-forbid.json}

This parameter controls whether OGNL scripting is allowed in expressions. Because of security

reasons it is deactivated by default. If you run into compatibility issues you could reactivate it but it

is at your own risk.

org.apache.unomi.security.properties.useOGNLScripting=${env:UNOMI_SCRIPTING_USE_OGNL:-

false}

This parameter controls the condition sanitizing done on the ContextServlet (/cxs/context.json). If

will remove any expressions that start with "script::". It is not recommended to change this value,

unless you run into compatibility issues.

org.apache.unomi.security.personalization.sanitizeConditions=${env:UNOMI_SECURITY_SANITIZEP

ERSONALIZATIONCONDITIONS:-true}

Apache Unomi 2.x - Documentation - 47

4.8.4. GROOVY ACTIONS

Groovy actions offer the ability to define a set of actions and action types (aka action descriptors) purely

from Groovy scripts defined at runtime.

Initially submitted to Unomi through a purpose-built REST API endpoint, Groovy actions are then stored

in Elasticsearch. When an event matches a rule configured to execute an action, the corresponding

action is fetched from Elasticsearch and executed.

ANATOMY OF A GROOVY ACTION

To be valid, a Groovy action must follow a particular convention which is divided in two parts:

• An annotation used to define the associated action type

• The function to be executed

Placed right before the function, the “@Action” annotation contains a set of parameter detailing how the

action should be triggered.

Table 1. @Action annotation

Field name Type Required Description

id String YES Id of the action

actionExecutor String YES Action executor contains

the name of the script to

call for the action type

and must be prefixed

with “groovy:”. The

prefix indicates to

Unomi which dispatcher

to use when processing

the action. The name

must be the file name of

the groovy file

containing the action

without the extension

(groovy:<filename>).

name String Action name

hidden Boolean Define if the action is

hidden or not. It is

usually used to hide

objects in a UI.

parameters List<Parameter> The parameters of the

actions, also defined by

annotations

Apache Unomi 2.x - Documentation - 48

https://github.com/apache/unomi/blob/master/extensions/groovy-actions/services/src/main/java/org/apache/unomi/groovy/actions/annotations/Parameter.java

Field name Type Required Description

systemTags List<String> A (reserved) list of tags

for the associated object.

This is usually populated

through JSON

descriptors and is not

meant to be modified by

end users. These tags

may include values that

help classify associated

objects.

The function contained within the Groovy Action must be called execute() and its last instruction must

be an integer.

This integer serves as an indication whether the values of the session and profile should be persisted. In

general, the codes used are defined in the EventService interface.

Each groovy actions extends by default a Base script defined here

REST API

Actions can be deployed/updated/deleted via the dedicated /cxs/groovyActions rest endpoint.

Deploy/update an Action:

curl -X POST 'http://localhost:8181/cxs/groovyActions' \

--user karaf:karaf \

--form 'file=@"<file location>"'

A Groovy Action can be updated by submitting another Action with the same id.

Delete an Action:

curl -X DELETE 'http://localhost:8181/cxs/groovyActions/<Action id>' \

--user karaf:karaf

Note that when a groovy action is deleted by the API, the action type associated with this action will also

be deleted.

HELLO WORLD!

In this short example, we’re going to create a Groovy Action that will be adding “Hello world!” to the logs

whenever a new view event is triggered.

The first step consists in creating the groovy script on your filesystem, start by creating the file

Apache Unomi 2.x - Documentation - 49

https://github.com/apache/unomi/blob/master/api/src/main/java/org/apache/unomi/api/services/EventService.java
https://github.com/apache/unomi/blob/master/extensions/groovy-actions/services/src/main/resources/META-INF/base/BaseScript.groovy

helloWorldGroovyAction.groovy:

@Action(id = "helloWorldGroovyAction",

 actionExecutor = "groovy:helloWorldGroovyAction",

 parameters = [@Parameter(id = "location", type = "string", multivalued = false)])

def execute() {

 logger.info("Hello {}", action.getParameterValues().get("location"))

 EventService.NO_CHANGE

}

As the last instruction of the script is EventService.NO_CHANGE, data will not be persisted.

Once the action has been created you need to submit it to Unomi (from the same folder as

helloWorldGroovyAction.groovy).

curl -X POST 'http://localhost:8181/cxs/groovyActions' \

--user karaf:karaf \

--form 'file=@helloWorldGroovyAction.groovy'

Important: A bug (UNOMI-847) in Apache Unomi 2.5 and lower requires the filename of a Groovy file

being submitted to be the same than the id of the Groovy action (as per the example above).

Finally, register a rule to trigger execution of the groovy action:

curl -X POST 'http://localhost:8181/cxs/rules' \

--user karaf:karaf \

--header 'Content-Type: application/json' \

--data-raw '{

 "metadata": {

 "id": "scriptGroovyActionRule",

 "name": "Test Groovy Action Rule",

 "description": "A sample rule to test Groovy actions"

 },

 "condition": {

 "type": "eventTypeCondition",

 "parameterValues": {

 "eventTypeId": "view"

 }

 },

 "actions": [

 {

 "parameterValues": {

 "location": "world!"

 },

 "type": "helloWorldGroovyAction"

 }

]

}'

Note that this rule contains a “location” parameter, with the value “world!”, which is then used in the log

Apache Unomi 2.x - Documentation - 50

https://issues.apache.org/jira/browse/UNOMI-847

message triggered by the action.

You can now use unomi to trigger a “view” event and see the corresponding message in the Unomi logs.

Once you’re done with the Hello World! action, it can be deleted using the following command:

curl -X DELETE 'http://localhost:8181/cxs/groovyActions/helloWorldGroovyAction' \

--user karaf:karaf

And the corresponding rule can be deleted using the following command:

curl -X DELETE 'http://localhost:8181/cxs/rules/scriptGroovyActionRule' \

--user karaf:karaf

INJECT AN OSGI SERVICE IN A GROOVY SCRIPT

It’s possible to use the services provided by unomi directly in the groovy actions.

In the following example, we are going to create a groovy action that displays the number of existing

profiles by using the profile service provided by unomi.

Apache Unomi 2.x - Documentation - 51

import org.osgi.framework.Bundle

import org.osgi.framework.BundleContext

import org.osgi.framework.FrameworkUtil

import org.apache.unomi.groovy.actions.GroovyActionDispatcher

import org.osgi.framework.ServiceReference

import org.slf4j.Logger

import org.slf4j.LoggerFactory

final Logger LOGGER = LoggerFactory.getLogger(GroovyActionDispatcher.class.getName());

@Action(id = "displayNumberOfProfilesAction", actionExecutor =

"groovy:DisplayNumberOfProfilesAction", description = "Display the number of existing profiles")

def execute() {

 // Use OSGI function to get the bundleContext

 Bundle bundle = FrameworkUtil.getBundle(GroovyActionDispatcher.class);

 BundleContext context = bundle.getBundleContext();

 // Get the service reference

 ServiceReference<ProfileService> serviceReference =

context.getServiceReference(ProfileService.class);

 // Get the service you are looking for

 ProfileService profileService = context.getService(serviceReference);

 // Example of displaying the number of profile

 LOGGER.info("Display profile count")

 LOGGER.info("{}", profileService.getAllProfilesCount().toString())

 return EventService.NO_CHANGE

}

KNOWN LIMITATION

Only the services accessible by the class loader of the GroovyActionDispatcher class can be used in the

groovy actions. That includes the services in the following packages:

org.apache.unomi.api.actions

org.apache.unomi.api.services

org.apache.unomi.api

org.apache.unomi.groovy.actions

org.apache.unomi.groovy.actions.annotations

org.apache.unomi.groovy.actions.services

org.apache.unomi.metrics

org.apache.unomi.persistence.spi

org.apache.unomi.services.actions;version

4.8.5. SCRIPTING ROADMAP

Scripting will probably undergo major changes in future versions of Apache Unomi, with the likely

retirement of MVEL in favor of Groovy Actions detailed above.

Apache Unomi 2.x - Documentation - 52

These changes will not happen on maintenance versions of Apache Unomi, only in the next major

version. Maintenance versions will of course maintain compatibility with existing scripting solutions.

4.9. AUTOMATIC PROFILE MERGING

Apache Unomi is capable of merging profiles based on a common property value. In order to use this,

you must add the MergeProfileOnPropertyAction to a rule (such as a login rule for example), and

configure it with the name of the property that will be used to identify the profiles to be merged. An

example could be the "email" property, meaning that if two (or more) profiles are found to have the

same value for the "email" property they will be merged by this action.

Upon merge, the old profiles are marked with a "mergedWith" property that will be used on next profile

access to delete the original profile and replace it with the merged profile (aka "master" profile). Once

this is done, all cookie tracking will use the merged profile.

To test, simply configure the action in the "login" or "facebookLogin" rules and set it up on the "email"

property. Upon sending one of the events, all matching profiles will be merged.

4.10. SECURING A PRODUCTION ENVIRONMENT

Before going live with a project, you should absolutely read the following section that will help you setup

a proper secure environment for running your context server.

Step 1: Install and configure a firewall

You should setup a firewall around your cluster of context servers and/or Elasticsearch nodes. If you

have an application-level firewall you should only allow the following connections open to the whole

world :

• http://localhost:8181/cxs/context.js

• http://localhost:8181/cxs/eventcollector

All other ports should not be accessible to the world.

For your Apache Unomi client applications (such as the Jahia CMS), you will need to make the following

ports accessible :

8181 (Context Server HTTP port)

9443 (Context Server HTTPS port)

The Apache Unomi actually requires HTTP Basic Auth for access to the Context Server administration

REST API, so it is highly recommended that you design your client applications to use the HTTPS port for

accessing the REST API.

The user accounts to access the REST API are actually routed through Karaf’s JAAS support, which you

may find the documentation for here :

Apache Unomi 2.x - Documentation - 53

http://localhost:8181/cxs/context.js
http://localhost:8181/cxs/eventcollector

• https://karaf.apache.org/manual/latest/#_security_2

The default username/password is

karaf/karaf

You should really change this default username/password as soon as possible. Changing the default

Karaf password can be done by modifying the org.apache.unomi.security.root.password in the

$MY_KARAF_HOME/etc/unomi.custom.system.properties file

Or if you want to also change the user name you could modify the following file :

$MY_KARAF_HOME/etc/users.properties

But you will also need to change the following property in the

$MY_KARAF_HOME/etc/unomi.custom.system.properties :

karaf.local.user = karaf

For your context servers, and for any standalone Elasticsearch nodes you will need to open the following

ports for proper node-to-node communication : 9200 (Elasticsearch REST API), 9300 (Elasticsearch TCP

transport)

Of course any ports listed here are the default ports configured in each server, you may adjust them if

needed.

Step 2 : Follow industry recommended best practices for securing Elasticsearch

You may find more valuable recommendations here :

• https://www.elastic.co/blog/found-elasticsearch-security

• https://www.elastic.co/blog/scripting-security

Step 4 : Setup a proxy in front of the context server

As an alternative to an application-level firewall, you could also route all traffic to the context server

through a proxy, and use it to filter any communication.

4.11. INTEGRATING WITH AN APACHE HTTP WEB SERVER

If you want to setup an Apache HTTP web server in from of Apache Unomi, here is an example

configuration using mod_proxy.

In your Unomi package directory, in $MY_KARAF_HOME/etc/unomi.custom.system.properties setup the

Apache Unomi 2.x - Documentation - 54

https://karaf.apache.org/manual/latest/#_security_2
https://www.elastic.co/blog/found-elasticsearch-security
https://www.elastic.co/blog/scripting-security

public address for the hostname unomi.apache.org:

org.apache.unomi.cluster.public.address=https://unomi.apache.org/

org.apache.unomi.cluster.internal.address=http://192.168.1.1:8181

and you will also need to change the cookie domain in the same file:

org.apache.unomi.profile.cookie.domain=apache.org

Main virtual host config:

<VirtualHost *:80>

 Include /var/www/vhosts/unomi.apache.org/conf/common.conf

</VirtualHost>

<IfModule mod_ssl.c>

 <VirtualHost *:443>

 Include /var/www/vhosts/unomi.apache.org/conf/common.conf

 SSLEngine on

 SSLCertificateFile /var/www/vhosts/unomi.apache.org/conf/ssl/24d5b9691e96eafa.crt

 SSLCertificateKeyFile /var/www/vhosts/unomi.apache.org/conf/ssl/apache.org.key

 SSLCertificateChainFile /var/www/vhosts/unomi.apache.org/conf/ssl/gd_bundle-g2-g1.crt

 <FilesMatch "\.(cgi|shtml|phtml|php)$">

 SSLOptions +StdEnvVars

 </FilesMatch>

 <Directory /usr/lib/cgi-bin>

 SSLOptions +StdEnvVars

 </Directory>

 BrowserMatch "MSIE [2-6]" \

 nokeepalive ssl-unclean-shutdown \

 downgrade-1.0 force-response-1.0

 BrowserMatch "MSIE [17-9]" ssl-unclean-shutdown

 </VirtualHost>

</IfModule>

common.conf:

Apache Unomi 2.x - Documentation - 55

ServerName unomi.apache.org

ServerAdmin webmaster@apache.org

DocumentRoot /var/www/vhosts/unomi.apache.org/html

CustomLog /var/log/apache2/access-unomi.apache.org.log combined

<Directory />

 Options FollowSymLinks

 AllowOverride None

</Directory>

<Directory /var/www/vhosts/unomi.apache.org/html>

 Options FollowSymLinks MultiViews

 AllowOverride None

 Order allow,deny

 allow from all

</Directory>

<Location /cxs>

 Order deny,allow

 deny from all

 allow from 88.198.26.2

 allow from www.apache.org

</Location>

RewriteEngine On

RewriteCond %{REQUEST_METHOD} ^(TRACE|TRACK)

RewriteRule .* - [F]

ProxyPreserveHost On

ProxyPass /server-status !

ProxyPass /robots.txt !

RewriteCond %{HTTP_USER_AGENT} Googlebot [OR]

RewriteCond %{HTTP_USER_AGENT} msnbot [OR]

RewriteCond %{HTTP_USER_AGENT} Slurp

RewriteRule ^.* - [F,L]

ProxyPass / http://localhost:8181/ connectiontimeout=20 timeout=300 ttl=120

ProxyPassReverse / http://localhost:8181/

4.12. CHANGING THE DEFAULT TRACKING LOCATION

When performing localhost requests to Apache Unomi, a default location will be used to insert values

into the session to make the location-based personalization still work. You can modify the default

location settings using the centralized configuration file

($MY_KARAF_HOME/etc/unomi.custom.system.properties).

Here are the default values for the location settings :

Apache Unomi 2.x - Documentation - 56

The following settings represent the default position that is used for localhost requests

org.apache.unomi.ip.database.location=${env:UNOMI_IP_DB:-${karaf.etc}/GeoLite2-City.mmdb}

org.apache.unomi.ip.default.countryCode=${env:UNOMI_IP_DEFAULT_COUNTRYCODE:-CH}

org.apache.unomi.ip.default.countryName=${env:UNOMI_IP_DEFAULT_COUNTRYNAME:-

Switzerland}

org.apache.unomi.ip.default.city=${env:UNOMI_IP_DEFAULT_CITY:-Geneva}

org.apache.unomi.ip.default.subdiv1=${env:UNOMI_IP_DEFAULT_SUBDIV1:-2660645}

org.apache.unomi.ip.default.subdiv2=${env:UNOMI_IP_DEFAULT_SUBDIV2:-6458783}

org.apache.unomi.ip.default.isp=${env:UNOMI_IP_DEFAULT_ISP:-Cablecom}

org.apache.unomi.ip.default.latitude=${env:UNOMI_IP_DEFAULT_LATITUDE:-46.1884341}

org.apache.unomi.ip.default.longitude=${env:UNOMI_IP_DEFAULT_LONGITUDE:-6.1282508}

You might want to change these for testing or for demonstration purposes.

4.13. APACHE KARAF SSH CONSOLE

The Apache Karaf SSH console is available inside Apache Unomi, but the port has been changed from the

default value of 8101 to 8102 to avoid conflicts with other Karaf-based products. So to connect to the SSH

console you should use:

ssh -p 8102 karaf@localhost

or the user/password you have setup to protect the system if you have changed it. You can find the list of

Apache Unomi shell commands in the "Shell commands" section of the documentation.

4.14. ELASTICSEARCH AUTHENTICATION AND SECURITY

With ElasticSearch 7, it’s possible to secure the access to your data. (see

https://www.elastic.co/guide/en/elasticsearch/reference/7.17/configuring-stack-security.html and

https://www.elastic.co/guide/en/elasticsearch/reference/7.17/secure-cluster.html)

4.14.1. USER AUTHENTICATION !

If your ElasticSearch have been configured to be only accessible by authenticated users, edit

etc/org.apache.unomi.persistence.elasticsearch.cfg to add the following settings:

username=USER

password=PASSWORD

4.14.2. SSL COMMUNICATION

By default Unomi will communicate with ElasticSearch using http but you can configure your

ElasticSearch server(s) to allow encrypted request using https.

You can follow this documentation to enable SSL on your ElasticSearch server(s):

https://www.elastic.co/guide/en/elasticsearch/reference/7.17/security-basic-setup-https.html

Apache Unomi 2.x - Documentation - 57

https://www.elastic.co/guide/en/elasticsearch/reference/7.17/configuring-stack-security.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.17/secure-cluster.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.17/security-basic-setup-https.html

If your ElasticSearch is correctly configure to encrypt communications on https:

Just edit etc/org.apache.unomi.persistence.elasticsearch.cfg to add the following settings:

sslEnable=true

By default, certificates will have to be configured on the Apache Unomi server to be able to trust the

identity of the ElasticSearch server(s). But if you need to trust all certificates automatically, you can use

this setting:

sslTrustAllCertificates=true

4.14.3. PERMISSIONS

Apache Unomi requires a particular set of Elasticsearch permissions for its operation.

If you are using Elasticsearch in a production environment, you will most likely need to fine tune

permissions given to the user used by Unomi.

The following permissions are required by Unomi:

• required cluster privileges: manage OR all

• required index privileges on unomi indices: write, manage, read OR all

4.15. HEALTH CHECK EXTENSION

The Health Check extension provides a way to check is required Unomi components are 'live'.

It consists in a simple http endpoint that provide a JSON view of integrated health checks. It can then be

used to determine if the server is up and running and can serve requests.

The health check endpoint is available at the following URL: /health/check and returns a simple JSON

response that includes all health check provider responses.

Basic Http Authentication enforce security for the health check endpoint using the existing karaf realm.

The user needs to have the specific role health to access the endpoint. Users and roles can be configured

in the etc/users.properties file. By default, a login/pass health/health is configured.

Specific configuration is located in : org.apache.unomi.healthcheck.cfg Existing health checks are using

configuration from that file, including authentication realm.

Existing health checks gives information about : - Karaf (as soon as the karaf container is started, that

check is LIVE) - Elasticsearch (connection to elasticsearch cluster and its health) - Unomi (unomi bundles

status) - Persistence (unomi to elasticsearch binding) - Cluster health (unomi cluster status and nodes

information)

Apache Unomi 2.x - Documentation - 58

All healthcheck can have a status : - DOWN (service is not available) - UP (service is up but does not

respond to request (starting or misconfigured)) - LIVE (service is ready to serve request) - ERROR (an

error occurred during service health check)

Any subsystem health check have a timeout of 400ms where check is cancelled and will be returned as

error.

Typical response to /health/check when unomi NOT started is :

[

 {

 "name":"karaf",

 "status":"LIVE",

 "collectingTime":0

 },

 {

 "name":"cluster",

 "status":"DOWN",

 "collectingTime":0

 },

 {

 "name":"elasticsearch",

 "status":"LIVE",

 "collectingTime":6

 },

 {

 "name":"persistence",

 "status":"DOWN",

 "collectingTime":0

 },

 {

 "name":"unomi",

 "status":"DOWN",

 "collectingTime":0

 }

]

Existing health check can be extended by adding specific provider in the extension. A provider is a class

that implements the HealthCheckProvider interface.

package org.apache.unomi.healthcheck;

public interface HealthCheckProvider {

 String name();

 HealthCheckResponse execute();

}

Calls to provider are supposed to be done at a regular rate (every 15 seconds for example) and should be

fast to execute. Feel free to include any caching strategy if needed.

Apache Unomi 2.x - Documentation - 59

4.15.1. CONFIGURATION

Healthcheck extension configuration is located in the file etc/org.apache.unomi.healthcheck.cfg

Extension can be enabled by setting the property enabled to true. An environment variable can be used

to set this property : UNOMI_HEALTHCHECK_ENABLED. You must restart the bundle for that config to

take effect.

By default, all healthcheck providers are included but the list of those included providers can be

customized by setting the property providers with a comma separated list of provider names. An

environment variable can be used to set this property : UNOMI_HEALTHCHECK_PROVIDERS. Karaf

provider is the one needed by healthcheck (always LIVE), it cannot be ignored.

The timeout used for each health check can be set by setting the property timeout to the desired value in

milliseconds. An environment variable can be used to set this property :

UNOMI_HEALTHCHECK_TIMEOUT

5. JSON SCHEMAS

5.1. INTRODUCTION

Introduced with Apache Unomi 2.0, JSON-Schema are used to validate data submitted through all of the

public (unprotected) API endpoints.

5.1.1. WHAT IS A JSON SCHEMA

JSON Schema is a powerful standard for validating the structure of JSON data. Described as a JSON

object, a JSON schema file contains format, types, patterns, and more. Used against JSON data, a JSON

schema validates that the data is compatible with the specified schema.

Example of a basic JSON schema that validates that the path property is a string property:

{

 "$id":"https://unomi.apache.org/schemas/json/example/1-0-0",

 "$schema":"https://json-schema.org/draft/2019-09/schema",

 "title":"Example of a basic schema",

 "type":"object",

 "properties":{

 "path":{

 "type":"string",

 "$comment":"Example of a property."

 }

 }

}

Apache Unomi 2.x - Documentation - 60

https://json-schema.org/specification.html

{

 "path": "example/of/path" //Is valid

}

{

 "path": 100 // Is not valid

}

Apache Unomi is using json-schema-validator to integrate JSON schema. The library and its source code

is available at: https://github.com/networknt/json-schema-validator, you can refer to the feature’s

pom.xml available at json-schema/service/pom.xml to identify which version of the library is currently

integrated.

You can discover and play with JSON schema using online tools such as JSON Schema Validator. Such

tools allow you to validate a schema against JSON data (such as the example above), and can point to

particular errors. More details about JSON schema are available on the official specification’s website:

https://json-schema.org/specification.html

5.1.2. KEY CONCEPTS

This section details concepts that are important to understand in order to use JSON schema validation

with Apache Unomi.

$ID KEYWORD

The $id keyword:

Each schema in Apache Unomi should have a $id, the $id value is an URI which will be used to retrieve

the schema and must be unique.

Example:

{

 "$id":"https://unomi.apache.org/schemas/json/example/1-0-0"

}

$REF KEYWORD

The $ref keyword allows you to reference another JSON schema by its $id keyword. It’s possible to

separate complex structures or repetitive parts of schema into other small files and use $ref to include

them into several json schemas.

Example with a person and an address:

Apache Unomi 2.x - Documentation - 61

https://github.com/networknt/json-schema-validator
https://github.com/apache/unomi/blob/master/extensions/json-schema/services/pom.xml#L35
https://www.jsonschemavalidator.net/
https://json-schema.org/specification.html

{

 "$id": "https://example.com/schemas/address",

 "type": "object",

 "properties": {

 "street_address": { "type": "string" },

 "city": { "type": "string" },

 "state": { "type": "string" }

 }

}

{

 "type": "object",

 "properties": {

 "first_name":{ "type": "string" },

 "last_name": { "type": "string" },

 "shipping_address": {

 "$ref": "https://example.com/schemas/address"

 },

 "billing_address": {

 "$ref": "https://example.com/schemas/address"

 }

 }

}

More details about $ref can be found in the specifications: https://json-schema.org/understanding-json-

schema/structuring.html#ref

ALLOF KEYWORD

The allOf keyword is an array of fields which allows schema composition. The data will be valid against

a schema if the data are valid against all of the given subschemas in the allOf part and are valid against

the properties defined in the schema.

Apache Unomi 2.x - Documentation - 62

https://json-schema.org/understanding-json-schema/structuring.html#ref
https://json-schema.org/understanding-json-schema/structuring.html#ref

{

 "$id": "https://unomi.apache.org/schemas/json/example/1-0-0",

 "$schema": "https://json-schema.org/draft/2019-09/schema",

 "type": "object",

 "allOf": [

 {

 "type": "object",

 "properties": {

 "fromAllOf": {

 "type": "integer",

 "$comment": "Example of allOf."

 }

 }

 }

],

 "properties": {

 "myProperty": {

 "type": "string",

 "$comment": "Example of a property."

 }

 }

}

Valid JSON:

{

 "myProperty": "My property",

 "fromAllOf" : 10

}

Invalid JSON:

{

 "myProperty": "My property",

 "fromAllOf" : "My value"

}

It’s also possible to use a reference $ref in the allOf keyword to reference another schema.

In Unomi, there is an example of using $ref in the allOf keyword to validate the properties which are

defined in the event schema. This schema contains properties common to all events. It’s done in the the

view event schema. The file can be found on github: view.json More details about allOf can be found in

the specifications: https://json-schema.org/understanding-json-schema/reference/combining.html#allof

UNEVALUATEDPROPERTIES KEYWORD

The unevaluatedProperties keyword is useful for schema composition as well as enforcing stricter

schemas. This keyword is similar to additionalProperties except that it can recognize properties

declared in sub schemas. When setting the unevaluatedProperties value to false, the properties which

Apache Unomi 2.x - Documentation - 63

https://github.com/apache/unomi/blob/master/extensions/json-schema/services/src/main/resources/META-INF/cxs/schemas/events/view/view.json#L13
https://json-schema.org/understanding-json-schema/reference/combining.html#allof

are not present in the properties part and are not present in the sub schemas will be considered as

invalid.

Example with the following schema:

{

 "$id": "https://unomi.apache.org/schemas/json/example/1-0-0",

 "$schema": "https://json-schema.org/draft/2019-09/schema",

 "type": "object",

 "allOf": [

 {

 "$ref": "https://unomi.apache.org/schemas/json/subschema/1-0-0"

 }

],

 "properties": {

 "myProperty": {

 "type": "string",

 "$comment": "Example of a property."

 }

 },

 "unevaluatedProperties": false

}

Sub schema:

{

 "$id": "https://unomi.apache.org/schemas/json/subschema/1-0-0",

 "$schema": "https://json-schema.org/draft/2019-09/schema",

 "type": "object",

 "properties": {

 "fromAllOf": {

 "type": "string",

 "$comment": "Example of allOf."

 }

 }

}

With the following data, the validation will fail because the property myNewProperty is not defined

neither the properties part nor the allOf part.

{

 "myProperty": "My property",

 "fromAllOf" : 10,

 "myNewProperty": "another one" //Not valid

}

5.1.3. HOW ARE JSON SCHEMA USED IN UNOMI

JSON Schema is used in Unomi to validate the data coming from the two public endpoints

/contextRequest and /eventCollector. Both endpoints have a custom deserializer which will begin by

Apache Unomi 2.x - Documentation - 64

validating the payload of the request, then will filter invalid events present in this payload. If an event is

not valid it will not be processed by the system. The internal events are not validated by JSON schema as

they are not sent through the public endpoints.

In Unomi, each event type must have an associated JSON schema. To validate an event, Unomi will

search for a schema in which the target of the schema is events, and with the name of the schema

matching the event type.

A custom keyword named self has to be present in the JSON schemas to store the information related to

each schema. The following example is the self part of the view event JSON schema. Having the target

set to events and the name set to view, this schema will be used to validate the events of type view.

…

"self":{

 "vendor":"org.apache.unomi",

 "target" : "events",

 "name": "view",

 "format":"jsonschema",

 "version":"1-0-0"

},

…

Link to the schema on github: view.json.

A set of predefined schema are present in Unomi, these schemas can be found under the folder :

extensions/json-schema/services/src/main/resources/META-INF/cxs/schemas.

These schemas will be loaded in memory at startup. Each schema where the target value is set to

events, will be used to validate events. The others are simply used as part of JSON schema or can be

used in additional JSON schemas.

It’s possible to add JSON schemas to validate your own event by using the API, the explanations to

manage JSON schema through the API are in the Create / update a JSON schema to validate an event

section.

Contrary to the predefined schemas, the schemas added through the API will be persisted in

Elasticsearch in the jsonSchema index. Schemas persisted in Elasticsearch do not require a restart of the

platform to reflect changes.

Process of creation of schemas:

Apache Unomi 2.x - Documentation - 65

https://github.com/apache/unomi/blob/master/extensions/json-schema/services/src/main/resources/META-INF/cxs/schemas/events/view/view.json
https://github.com/apache/unomi/tree/master/extensions/json-schema/services/src/main/resources/META-INF/cxs/schemas

5.2. JSON SCHEMA API

The JSON schema endpoints are private, so the user has to be authenticated to manage the JSON schema

in Unomi.

5.2.1. LIST EXISTING SCHEMAS

The REST endpoint GET {{url}}/cxs/jsonSchema allows to get all ids of available schemas and

subschemas.

List of predefined schemas:

[

 "https://unomi.apache.org/schemas/json/events/modifyConsent/properties/1-0-0",

 "https://unomi.apache.org/schemas/json/item/1-0-0",

 "https://unomi.apache.org/schemas/json/events/login/1-0-0",

 "https://unomi.apache.org/schemas/json/events/modifyConsent/1-0-0",

 "https://unomi.apache.org/schemas/json/consentType/1-0-0",

 "https://unomi.apache.org/schemas/json/items/page/properties/1-0-0",

 "https://unomi.apache.org/schemas/json/items/page/properties/attributes/1-0-0",

 "https://unomi.apache.org/schemas/json/events/incrementInterest/1-0-0",

 "https://unomi.apache.org/schemas/json/events/view/flattenProperties/1-0-0",

 "https://unomi.apache.org/schemas/json/interests/1-0-0",

 "https://unomi.apache.org/schemas/json/items/site/1-0-0",

 "https://unomi.apache.org/schemas/json/items/page/properties/pageInfo/1-0-0",

 "https://unomi.apache.org/schemas/json/rest/requestIds/1-0-0",

 "https://unomi.apache.org/schemas/json/rest/eventscollectorrequest/1-0-0",

 "https://unomi.apache.org/schemas/json/events/view/properties/1-0-0",

 "https://unomi.apache.org/schemas/json/items/page/1-0-0",

 "https://unomi.apache.org/schemas/json/URLParameters/1-0-0",

 "https://unomi.apache.org/schemas/json/event/1-0-0",

 "https://unomi.apache.org/schemas/json/timestampeditem/1-0-0",

 "https://unomi.apache.org/schemas/json/events/updateProperties/1-0-0",

 "https://unomi.apache.org/schemas/json/consent/1-0-0",

 "https://unomi.apache.org/schemas/json/events/incrementInterest/flattenProperties/1-0-0",

 "https://unomi.apache.org/schemas/json/events/view/1-0-0"

]

Custom schemas will also be present in this list once added.

5.2.2. READ A SCHEMA

It’s possible to get a schema by its id by calling the endpoint POST {{url}}/cxs/jsonSchema/query with the

id of the schema in the payload of the query.

Example:

Apache Unomi 2.x - Documentation - 66

curl --location --request POST 'http://localhost:8181/cxs/jsonSchema/query' \

-u 'karaf:karaf'

--header 'Content-Type: text/plain' \

--header 'Cookie: context-profile-id=0f2fbca8-c242-4e6d-a439-d65fcbf0f0a8' \

--data-raw 'https://unomi.apache.org/schemas/json/event/1-0-0'

5.2.3. CREATE / UPDATE A JSON SCHEMA TO VALIDATE AN EVENT

It’s possible to add or update JSON schema by calling the endpoint POST {{url}}/cxs/jsonSchema with the

JSON schema in the payload of the request. If the JSON schema exists it will be updated with the new

one.

Example of creation:

curl --location --request POST 'http://localhost:8181/cxs/jsonSchema' \

-u 'karaf:karaf' \

--header 'Content-Type: application/json' \

--header 'Cookie: context-profile-id=0f2fbca8-c242-4e6d-a439-d65fcbf0f0a8' \

--data-raw '{

 "$id": "https://vendor.test.com/schemas/json/events/dummy/1-0-0",

 "$schema": "https://json-schema.org/draft/2019-09/schema",

 "self": {

 "vendor": "com.vendor.test",

 "name": "dummy",

 "format": "jsonschema",

 "target": "events",

 "version": "1-0-0"

 },

 "title": "DummyEvent",

 "type": "object",

 "allOf": [

 {

 "$ref": "https://unomi.apache.org/schemas/json/event/1-0-0"

 }

],

 "properties": {

 "properties": {

 "$ref": "https://vendor.test.com/schemas/json/events/dummy/properties/1-0-0"

 }

 },

 "unevaluatedProperties": false

}'

5.2.4. DELETING A SCHEMA

To delete a schema, call the endpoint POST {{url}}/cxs/jsonSchema/delete with the id of the schema into

the payload of the request

Example:

Apache Unomi 2.x - Documentation - 67

curl --location --request POST 'http://localhost:8181/cxs/jsonSchema/delete' \

-u 'karaf:karaf' \

--header 'Content-Type: text/plain' \

--header 'Cookie: context-profile-id=0f2fbca8-c242-4e6d-a439-d65fcbf0f0a8' \

--data-raw 'https://vendor.test.com/schemas/json/events/dummy/1-0-0'

5.2.5. ERROR MANAGEMENT

When calling an endpoint with invalid data, such as an invalid value for the sessionId property in the

contextRequest object or eventCollectorRequest object, the server would respond with a 400 error code

and the message Request rejected by the server because: Invalid received data.

5.2.6. DETAILS ON INVALID EVENTS

If it’s an event which is incorrect the server will continue to process the request but will exclude the

invalid events.

5.3. DEVELOP WITH UNOMI AND JSON SCHEMAS

Schemas can be complex to develop, and sometimes, understanding why an event is rejected can be

challenging.

This section of the documentation defails mechanisms put in place to facilitate the development when

working around JSON Schemas (when creating a new schema, when modifying an existing event, …etc).

5.3.1. LOGS IN DEBUG MODE

Running Apache Unomi with the logs in debug level will add to the logs the reason why events are

rejected. You can set the log level of the class validating the events to debug by using the following karaf

command:

log:set DEBUG org.apache.unomi.schema.impl.SchemaServiceImpl

Doing so will output logs similar to this:

08:55:28.128 DEBUG [qtp1422628821-128] Schema validation found 2 errors while validating against

schema: https://unomi.apache.org/schemas/json/events/view/1-0-0

08:55:28.138 DEBUG [qtp1422628821-128] Validation error: There are unevaluated properties at

following paths $.source.properties

08:55:28.140 DEBUG [qtp1422628821-128] Validation error: There are unevaluated properties at

following paths $.source.itemId, $.source.itemType, $.source.scope, $.source.properties

08:55:28.142 ERROR [qtp1422628821-128] An event was rejected - switch to DEBUG log level for more

information

Apache Unomi 2.x - Documentation - 68

5.3.2. VALIDATEEVENT ENDPOINT

A dedicated Admin endpoint (requires authentication), accessible at: cxs/jsonSchema/validateEvent, was

created to validate events against JSON Schemas loaded in Apache Unomi.

For example, sending an event not matching a schema:

curl --request POST \

 --url http://localhost:8181/cxs/jsonSchema/validateEvent \

 --user karaf:karaf \

 --header 'Content-Type: application/json' \

 --data '{

 "eventType": "no-event",

 "scope": "unknown_scope",

 "properties": {

 "workspace": "no_workspace",

 "path": "some/path"

 }

}'

Would return the following:

Request rejected by the server because: Unable to validate event: Schema not found for event type:

no-event

And if we were to submit a valid event type but make a typo in one of the properties name, the endpoint

will point us towards the incorrect property:

[

 {

 "error": "There are unevaluated properties at following paths $.source.scopee"

 }

]

5.3.3. VALIDATEEVENTS ENDPOINT

A dedicated Admin endpoint (requires authentication), accessible at: cxs/jsonSchema/validateEvents,

was created to validate a list of event at once against JSON Schemas loaded in Apache Unomi.

For example, sending a list of event not matching a schema:

Apache Unomi 2.x - Documentation - 69

curl --request POST \

 --url http://localhost:8181/cxs/jsonSchema/validateEvents \

 --user karaf:karaf \

 --header 'Content-Type: application/json' \

 --data '[{

 "eventType": "view",

 "scope": "scope",

 "properties": {

 "workspace": "no_workspace",

 "path": "some/path",

 "unknowProperty": "not valid"

 }, {

 "eventType": "view",

 "scope": "scope",

 "properties": {

 "workspace": "no_workspace",

 "path": "some/path",

 "unknowProperty": "not valid",

 "secondUnknowProperty": "also not valid"

 }, {

 "eventType": "notKnownEvent",

 "scope": "scope",

 "properties": {

 "workspace": "no_workspace",

 "path": "some/path"

 }

}]'

Would return the errors grouped by event type as the following:

{

 "view": [

 {

 "error": "There are unevaluated properties at following paths $.properties.unknowProperty"

 },

 {

 "error": "There are unevaluated properties at following paths

$.properties.secondUnknowProperty"

 }

],

 "notKnownEvent": [

 {

 "error": "No Schema found for this event type"

 }

]

}

If several events have the same issue, only one message is returned for this issue.

5.4. EXTEND AN EXISTING SCHEMA

Apache Unomi 2.x - Documentation - 70

5.4.1. WHEN A EXTENSION IS NEEDED?

Apache Unomi provides predefined schemas to validate some known events such as a view event.

The Apache Unomi JSON schemas are designed to consider invalid any properties which are not defined

in the JSON schema. So if an unknown property is part of the event, the event will be considered as

invalid.

This means that if your events include additional properties, you will need extensions to describe these.

5.4.2. UNDERSTANDING HOW EXTENSIONS ARE MERGED IN UNOMI

An extension schema is a JSON schema whose id will be overridden and be defined by a keyword named

extends in the self part of the extension.

When sending an extension through the API, it will be persisted in Elasticsearch then will be merged to

the targeted schema.

What does “merge a schema” mean? The merge will simply add in the allOf keyword of the targeted

schema a reference to the extensions. It means that to be valid, an event should be valid against the base

schema and against the ones added in the allOf.

Example of an extension to allow to add a new property in the view event properties:

{

 "$id": "https://vendor.test.com/schemas/json/events/dummy/extension/1-0-0",

 "$schema": "https://json-schema.org/draft/2019-09/schema",

 "self":{

 "vendor":"com.vendor.test",

 "name":"dummyExtension",

 "format":"jsonschema",

 "extends": "https://unomi.apache.org/schemas/json/events/view/properties/1-0-0",

 "version":"1-0-0"

 },

 "title": "DummyEventExtension",

 "type": "object",

 "properties": {

 "myNewProp": {

 "type": "string"

 }

 }

}

When validating the events of type view, the extension will be added to the schema with the id

https://unomi.apache.org/schemas/json/events/view/properties/1-0-0 like the following:

"allOf": [{

 "$ref": "https://vendor.test.com/schemas/json/events/dummy/extension/1-0-0"

}]

Apache Unomi 2.x - Documentation - 71

With this extension the property myNewProp can now be added to the event.

…

"properties": {

 "myNewProp" : "newValue"

},

…

Process when adding extension:

5.4.3. HOW TO ADD AN EXTENSION THROUGH THE API

Since an extension is also a JSON schema, it is possible to add extensions by calling the endpoint to add a

JSON schema. By calling POST {{url}}/cxs/jsonSchema with the JSON schema in the payload of the

request, the extension will be persisted and will be merged to the targeted schema.

6. GRAPHQL API

6.1. INTRODUCTION

First introduced in Apache Unomi 2.0, a GraphQL API is available as an alternative to REST for

interacting with the platform. Disabled by default, the GraphQL API is currently considered a beta

feature.

We look forward for this new GraphQL API to be used, feel free to open discussion on Unomi Slack

channel or create tickets on Jira

6.2. ENABLING THE API

The GraphQL API must be enabled using a system property (or environment variable):

Extract from: etc/custom.system.properties

###

##################################

Settings for GraphQL

###

##################################

org.apache.unomi.graphql.feature.activated=${env:UNOMI_GRAPHQL_FEATURE_ACTIVATED:-false}

Apache Unomi 2.x - Documentation - 72

https://the-asf.slack.com/messages/CBP2Z98Q7/
https://the-asf.slack.com/messages/CBP2Z98Q7/
https://issues.apache.org/jira/projects/UNOMI/issues

You can either modify the org.apache.unomi.graphql.feature.activated property or specify the

UNOMI_GRAPHQL_FEATURE_ACTIVATED environment variable (if using Docker for example).

6.3. ENDPOINTS

Two endpoints were introduced for Apache Unomi 2 GraphQL API: * /graphql is the primary endpoint

for interacting programatically with the API and aims at receiving POST requests. * /graphql-ui provides

access to the GraphQL Playground UI and aims at being accessed by a Web Browser.

6.4. GRAPHQL SCHEMA

Thanks to GraphQL introspection, there is no dedicated documentation per-se as the Schema itself

serves as documentation.

You can easily view the schema by navigrating to /graphql-ui, depending on your setup (localhost, public

host, …), you might need to adjust the URL to point GraphQL Playground to the /graphql endpoint.

6.5. GRAPHQL REQUEST EXAMPLES

You can use embedded GraphiQL interface available at http://localhost:8181/graphql-ui or use any other

GraphQL client using that url for requests.

6.5.1. RETRIEVING YOUR FIRST PROFILE

Profile can be retrieved using getProfile query

query($profileID: CDP_ProfileIDInput!, $createIfMissing: Boolean) {

 cdp {

 getProfile(profileID: $profileID, createIfMissing: $createIfMissing) {

 firstName

 lastName

 gender

 cdp_profileIDs {

 client {

 ID

 title

 }

 id

 }

 }

 }

}

This query accepts two variables that need to be provided in the Query variables section:

Apache Unomi 2.x - Documentation - 73

http://localhost:8181/graphql-ui

{

 "profileID": {

 "client":{

 "id": "defaultClientId"

 },

 "id": 1001

 },

 "createIfMissing": true

}

 If you don’t want profile to be created if missing, set createIfMissing to false.

The response will look like this:

{

 "data": {

 "cdp": {

 "getProfile": {

 "firstName": null,

 "lastName": null,

 "gender": null,

 "cdp_profileIDs": [

 {

 "client": {

 "ID": "defaultClientId",

 "title": "Default Client"

 },

 "id": "1001"

 }

]

 }

 }

 }

}

6.5.2. UPDATING PROFILE

Now let’s update our profile with some data. It can be done using processEvents mutation:

mutation($events: [CDP_EventInput]!) {

 cdp {

 processEvents(events: $events)

 }

}

This mutation accepts one variable that needs to be provided in the Query variables section:

Apache Unomi 2.x - Documentation - 74

{

 "events": [

 {

 "cdp_objectID": 1001,

 "cdp_profileID": {

 "client": {

 "id": "defaultClientId"

 },

 "id": 1001

 },

 "cdp_profileUpdateEvent": {

 "firstName": "John",

 "lastName": "Doe",

 "gender": "Male"

 }

 }

]

}

The response will have the number of processed events:

{

 "data": {

 "cdp": {

 "processEvents": 1

 }

 }

}


processEvents accepts a number of other event types that are listed on

CDP_EventInput type.

If you run the getProfile query again, you will see that the profile has been updated.

6.5.3. RESTRICTED METHODS

Some methods are restricted to authenticated users only. One example is findProfiles query:

Apache Unomi 2.x - Documentation - 75

query {

 cdp {

 findProfiles {

 totalCount

 edges {

 node {

 cdp_profileIDs {

 client{

 title

 ID

 }

 id

 }

 }

 }

 }

 }

}

And if you run it now, you will get an error.

To make this query work you need to supply authorization token in the HTTP headers section:

{

 "authorization": "Basic a2FyYWY6a2FyYWY="

}

The above header adds Basic authorization scheme with base64 encoded karaf:karaf value to the

request.

The result will now show the list of profiles:

Apache Unomi 2.x - Documentation - 76

{

 "data": {

 "cdp": {

 "findProfiles": {

 "totalCount": 1,

 "edges": [

 {

 "node": {

 "cdp_profileIDs": [

 {

 "client": {

 "title": "Default Client",

 "ID": "defaultClientId"

 },

 "id": "1001"

 }

]

 }

 }

]

 }

 }

 }

}

6.5.4. DELETING PROFILE

Profile can be deleted using deleteProfile mutation:

mutation($profileID: CDP_ProfileIDInput!) {

 cdp {

 deleteProfile(profileID: $profileID)

 }

}

This mutation accepts one variable that needs to be provided in the Query variables section:

{

 "profileID": {

 "client":{

 "id": "defaultClientId"

 },

 "id": 1001

 }

}

The response will show the result of the operation:

Apache Unomi 2.x - Documentation - 77

{

 "data": {

 "cdp": {

 "deleteProfile": true

 }

 }

}

6.5.5. WHERE TO GO FROM HERE

• You can find more useful Apache Unomi URLs that can be used in the same way as the above

examples.

• Read GraphQL documentation to learn more about GraphQL syntax.

7. MIGRATIONS

This section contains information and steps to migrate between major Unomi versions.

7.1. FROM VERSION 1.6 TO 2.0

7.2. MIGRATION OVERVIEW

Apache Unomi 2.0 is a major release, and as such it does introduce breaking changes. This portion of the

document detail the various steps we recommend following to successfully migrate your environment

from Apache Unomi 1.6 to Apache Unomi 2.0.

There are two main steps in preparing your migration to Apache Unomi 2.0: - Updating applications

consuming Unomi - Migrating your existing data

7.3. UPDATING APPLICATIONS CONSUMING UNOMI

Since Apache Unomi is an engine, you’ve probably built multiple applications consuming its APIs, you

might also have built extensions directly running in Unomi.

As you begin updating applications consuming Apache Unomi, it is generally a good practice to enable

debug mode. Doing so will display any errors when processing events (such as JSON Schema

validations), and will provide useful indications towards solving issues.

7.3.1. DATA MODEL CHANGES

There has been changes to Unomi Data model, please make sure to review those in the What’s new in

Unomi 2 section of the user manual.

Apache Unomi 2.x - Documentation - 78

https://graphql.org/learn/

7.3.2. CREATE JSON SCHEMAS

Once you updated your applications to align with Unomi 2 data model, the next step will be to create the

necessary JSON Schemas.

Any event (and more generally, any object) received through Unomi public endpoints do require a valid

JSON schema. Apache Unomi ships, out of the box, with all of the necessary JSON Schemas for its own

operation as well as all event types generated from the Apache Unomi Web Tracker but you will need to

create schemas for any custom event you may be using.

When creating your new schemas, there are multiple ways of testing them:

• Using a the event validation API endpoint available at the URL : /cxs/jsonSchema/validateEvent

• Using debug logs when sending events using the usual ways (using the /context.json or

/eventcollector endpoints)

Note that in both cases it helps to activate the debug logs, that may be activated either:

• Through the ssh Karaf console command : log:set DEBUG

org.apache.unomi.schema.impl.SchemaServiceImpl

• Using the UNOMI_LOGS_JSONSCHEMA_LEVEL=DEBUG environment variable and then restarting

Apache Unomi. This is especially useful when using Docker Containers.

Once the debug logs are active, you will see detailed error messages if your events are not matched with

any deployed JSON schema.

Note that it is currently not possible to modify or surcharge an existing system-deployed JSON schema

via the REST API. It is however possible to deploy new schemas and manage them through the REST API

on the /cxs/jsonSchema endpoint. If you are currently using custom properties on an Apache Unomi-

provided event type, you will need to either change to use a new custom eventType and create the

corresponding schema or to create a Unomi schema extension. You can find more details in the JSON

Schema section of this documentation.

You can use, as a source of inspiration for creating new schemas, Apache Unomi 2.0 schema located at:

extensions/json-schema/services/src/main/resources/META-INF/cxs/schemas.

Finally, and although it is technically feasible, we recommend against creating permissive JSON Schemas

allowing any event payload. This requires making sure that you don’t allow undeclared properties by

setting JSON schema keywords such as unevaluated properties to false.

7.4. MIGRATING YOUR EXISTING DATA

7.4.1. ELASTICSEARCH VERSION AND CAPACITY

While still using Unomi 1.6, the first step will be to upgrade your Elasticsearch to 7.17.5. Documentation

is available on Elasticsearch’s website.

Apache Unomi 2.x - Documentation - 79

https://github.com/apache/unomi/tree/master/extensions/json-schema/services/src/main/resources/META-INF/cxs/schemas
https://json-schema.org/understanding-json-schema/reference/object.html#unevaluated-properties
https://www.elastic.co/guide/en/elasticsearch/reference/7.17/setup-upgrade.html

Your Elasticsearch cluster must have enough capacity to handle the migration. At a minimum, the

required capacity storage capacity must be greater than the size of the dataset in production + the size of

the largest index. Any other settings should at least be as big as the source setup (preferably higher).

7.4.2. MIGRATE CUSTOM DATA

Apache Unomi 2.0 knows how to migrate its own data from the new model to the old one, but it does not

know how to migrate custom events you might be using in your environment.

It relies on a set of groovy scripts to perform its data migration, located in tools/shell-

commands/src/main/resources/META-INF/cxs/migration, these scripts are sorted alphabetically and

executed sequentially when migration is started. You can use these scripts as a source of inspiration for

creating your own.

In most cases, migration steps consist of an Elasticsearch painless script that will handle the data

changes.

Depending of the volume of data, migration can be lengthy. By paying attention to when re-indexation is

happening (triggered in the groovy scripts by MigrationUtils.reIndex()), you can find the most

appropriate time for your scritps to be executed and avoid re-indexing the same indices multiple times.

For example if you wanted to update profiles with custom data (currently migrated by migrate-2.0.0-10-

profileReindex.groovy), you could create a script in position "09" that would only contain painless scripts

without a reindexing step. The script in position "10" will introduce its own painless script, then trigger

the re-indexation. This way you don’t have to re-index the same indices twice.

You can find existing painless scripts in tools/shell-commands/src/main/resources/requestBody/2.0.0

At runtime, and when starting the migration, Unomi 2.0 will take its own scripts, any additional scripts

located in data/migration/scripts, will sort the resulting list alphabetically and execute each migration

script sequentially.

7.4.3. PERFORM THE MIGRATION

CHECKLIST

Before starting the migration, please ensure that:

• You do have a backup of your data

• You did practice the migration in a staging environment, NEVER migrate a production environment

without prior validation

• You verified your applications were operational with Apache Unomi 2.0 (JSON schemas created,

client applications updated, …)

• You are running Elasticsearch 7.17.5 (or a later 7.x version)

• Your Elasticsearch cluster has enough capacity to handle the migration

Apache Unomi 2.x - Documentation - 80

https://github.com/apache/unomi/tree/master/tools/shell-commands/src/main/resources/META-INF/cxs/migration
https://github.com/apache/unomi/tree/master/tools/shell-commands/src/main/resources/META-INF/cxs/migration
https://github.com/apache/unomi/tree/master/tools/shell-commands/src/main/resources/requestBody/2.0.0

• You are currently running Apache Unomi 1.6 (or a later 1.x version)

• You will be using the same Apache Unomi instance for the entire migration progress. Do not start

the migration on one node, and resume an interrupted migration on another node.

MIGRATION PROCESS OVERVIEW

The migration is performed by means of a dedicated Apache Unomi 2.0 node started in a particular

migration mode.

In a nutshell, the migration process will consist in the following steps:

• Shutdown your Apache Unomi 1.6 cluster

• Start one Apache Unomi 2.0 node that will perform the migration (upon startup)

• Wait for data migration to complete

• Start your Apache Unomi 2.0 cluster

• (optional) Import additional JSON Schemas

Each migration step maintains its execution state, meaning if a step fails you can fix the issue, and

resume the migration from the failed step.

CONFIGURATION

The following environment variables are used for the migration:

Environment Variable Unomi Setting Default

UNOMI_ELASTICSEARCH_ADDRE

SSES

org.apache.unomi.elasticsearch.a

ddresses

localhost:9200

UNOMI_ELASTICSEARCH_SSL_EN

ABLE

org.apache.unomi.elasticsearch.s

slEnable

false

UNOMI_ELASTICSEARCH_USERN

AME

org.apache.unomi.elasticsearch.u

sername

UNOMI_ELASTICSEARCH_PASSW

ORD

org.apache.unomi.elasticsearch.p

assword

UNOMI_ELASTICSEARCH_SSL_TR

UST_ALL_CERTIFICATES

org.apache.unomi.elasticsearch.s

slTrustAllCertificates

false

UNOMI_ELASTICSEARCH_INDEX

PREFIX

org.apache.unomi.elasticsearch.i

ndex.prefix

context

UNOMI_MIGRATION_RECOVER_F

ROM_HISTORY

org.apache.unomi.migration.reco

verFromHistory

true

If there is a need for advanced configuratiion, the configuration file used by Apache Unomi 2.0 is located

in: etc/org.apache.unomi.migration.cfg

Apache Unomi 2.x - Documentation - 81

MIGRATE MANUALLY

You can migrate manually using the Karaf console.

After having started Apache Unomi 2.0 with the ./karaf command, you will be presented with the Karaf

shell.

From there you have two options:

• The necessary configuration variables (see above) have already been set, you can start the

migration using the command: unomi:migrate 1.6.0

• Or, you want to provide the configuration settings interactively via the terminal, in that case you

can start the migration in interactive mode using: unomi:migrate 1.6.0

The parameter of the migrate command (1.6.0 in the example above) corresponds to the version you’re

migrating from.

At the end of the migration, you can start Unomi 2.0 as usual using: unomi:start.

MIGRATE WITH DOCKER

The migration can also be performed using Docker images, the migration itself can be started by passing

a specific value to the KARAF_OPTS environment variable.

In the context of this migration guide, we will asssume that:

• Custom migration scripts are located in /home/unomi/migration/scripts/

• Painless scripts, or more generally any migration assets are located in

/home/unomi/migration/assets/, these scripts will be mounted under /tmp/assets/ inside the Docker

container.

docker run \

 -e UNOMI_ELASTICSEARCH_ADDRESSES=localhost:9200 \

 -e KARAF_OPTS="-Dunomi.autoMigrate=1.6.0" \

 --v /home/unomi/migration/scripts/:/opt/apache-unomi/data/migration/scripts \

 --v /home/unomi/migration/assets/:/tmp/assets/ \

 apache/unomi:2.0.0-SNAPSHOT

You might need to provide additional variables (see table above) depending of your environment.

If the migration fails, you can simply restart this command.

Using the above command, Unomi 2.0 will not start automatically at the end of the migration. You can

start Unomi automatically at the end of the migration by passing: -e KARAF_OPTS="-

Dunomi.autoMigrate=1.6.0 -Dunomi.autoStart=true"

Apache Unomi 2.x - Documentation - 82

STEP BY STEP MIGRATION WITH DOCKER

Once your cluster is shutdown, performing the migration will be as simple as starting a dedicated docker

container.

POST MIGRATION

Once the migration has been executed, you will be able to start Apache Unomi 2.0

Remember you still need to submit JSON schemas corresponding to your events, you can do so using the

API.

7.5. FROM VERSION 1.5 TO 1.6

Migration from Unomi 1.5x to 1.6x does not require any particular steps, simply restart your cluster in

the new version.

7.6. FROM VERSION 1.4 TO 1.5

7.6.1. DATA MODEL AND ELASTICSEARCH 7

Since Apache Unomi version 1.5.0 we decided to upgrade the supported ElasticSearch version to the

7.4.2.

To be able to do so, we had to rework the way the data was stored inside ElasticSearch.

Previously every items was stored inside the same ElasticSearch index but this is not allowed anymore

in recent ElasticSearch versions.

Since Apache Unomi version 1.5.0 every type of items (see section: Items) is now stored in a dedicated

separated index.

7.6.2. API CHANGES

To be able to handle the multiple indices the Persistence API implementation

(ElasticSearchPersistenceServiceImpl) have been adapted and simplified.

The good news is that there is no API changes, the persistence API interface didn’t changed.

Any custom Apache Unomi plugins or extensions should continue to work on Apache Unomi 1.5.0.

The only notable changes are located at the ElasticSearchPersistenceServiceImpl Java class. This class

should not be use directly, instead you should use OSGI service dependency injection using the interface

PersistenceService.

But if you are interested in the implementation changes:

Apache Unomi 2.x - Documentation - 83

#_items
https://github.com/apache/unomi/blob/9f1bab437fd93826dc54d318ed00d3b2e3161437/persistence-elasticsearch/core/src/main/java/org/apache/unomi/persistence/elasticsearch/ElasticSearchPersistenceServiceImpl.java
https://github.com/apache/unomi/blob/9f1bab437fd93826dc54d318ed00d3b2e3161437/persistence-elasticsearch/core/src/main/java/org/apache/unomi/persistence/elasticsearch/ElasticSearchPersistenceServiceImpl.java
https://github.com/apache/unomi/blob/9f1bab437fd93826dc54d318ed00d3b2e3161437/persistence-spi/src/main/java/org/apache/unomi/persistence/spi/PersistenceService.java

1. The property index.name have been renamed to index.prefix. Previously used for the single one

index name, now every index is prefixed using this property. (context- by default)

2. We removed the property index.names originally used to create additional indices (used by the

geonames DB for exemple). This property is not needed anymore because the index is automatically

created by the peristence service when the mapping configuration is loaded. Example of mapping

configuration file: (geoname index mapping)

Because of this changes the geonames DB index name is now respecting the index naming with prefix

like any other item type. Previously named: geonames is now using the index name context-

geonameentry (see: Documentation about geonames extension).

7.6.3. MIGRATION STEPS

In order to migrate the data from ElasticSearch 5 to 7, Unomi provides a migration tool that is directly

integrated.

In this migration the following is assumed:

• the ElasticSearch 5 cluster installation is referred to as the source

• the ElasticSearch 7 cluster installation is referred to as the target

• the Unomi 1.4 cluster installation is completely stopped

• the Unomi 1.5 cluster installation has never been started (just uncompressed)

• the Unomi 1.5 cluster installation has been configured to connect to the target (ElasticSearch 7)

cluster

It is HIGHLY RECOMMENDED to perform a full cluster backup/snapshot of the source clusters (including

ElasticSearch and Unomi clusters), and ideally to perform the migration on a restored snapshot of the

source cluster. For more information on ElasticSearch 5 snapshots and restore you can find it here:

https://www.elastic.co/guide/en/elasticsearch/reference/5.6/modules-snapshots.html

The way the migration works is that both ElasticSearch 5 AND an ElasticSearch 7 clusters (or just single

nodes) will be started at the same time, and data will be migrated from the ES 5 to the ES 7 cluster. Note

that it is possible to use a single node for both the source and the target clusters to - for example -

perform the migration on a single machine. If you choose to do that you will have to adjust port

numbers on either the source or target cluster node. Changing ports requires a restart of the ES cluster

you are modifying. In this example we will illustrate how to migrate by modifying the source cluster

node ports.

So in the source 's ElasticSearch 5 config/elasticsearch.yml file we have modified the default ports to:

transport.tcp.port: 9310

http.port: 9210

Apache Unomi 2.x - Documentation - 84

https://github.com/apache/unomi/blob/9f1bab437fd93826dc54d318ed00d3b2e3161437/extensions/geonames/services/src/main/resources/META-INF/cxs/mappings/geonameEntry.json
#_installing_geonames_database

Make SURE you change the ports out of the default 9200-9205 and 9300-9305 range (or whatever your

cluster uses) otherwise both clusters will attempt to merge!

On the target ElasticSearch 7 cluster configuration you will need to add the following setting in the

config/elasticsearch.yml:

reindex.remote.whitelist: "localhost:9210"

Replace "localhost:9210" which whatever location your source cluster is available at. Restart or start

your target ElasticSearch 7 cluster.

Important: Make sure you haven’t started Apache Unomi before (using the unomi:start command or the

autostart command line parameter) otherwise you will need to restart your Apache Unomi installation

from scratch. The best way to be sure of that is to start a new Unomi install by uncompressing the

archive and not launching it.

You can then start both instances of ElasticSearch 5 and ElasticSearch 7 and finally start Apache Unomi

using:

./karaf

Once in the console launch the migration using the following command:

migrate 1.4.0

Note: the 1.4.0 version is the starting version. If you are starting from a different version (for example a

fork), make sure that you know what official version of Apache Unomi it corresponds to and you can use

the official version number as a start version for the migration.

Follow the instructions and answer the prompts. If you used the above configuration as an example you

can simply use the default values.

Be careful because the first address that the tool will ask for is the target (ElasticSearch 7) cluster, not the

ES 5 one.

Note that it is also possible to change the index prefix to be different from the default context value so

that you could host multiple Apache Unomi instances on the same ElasticSearch cluster.

Important note: only the data that Apache Unomi manages will be migrated. If you have any other data

(for example Kibana or ElasticSearch monitoring indices) they will not be migrated by this migration

tool.

Once the migration has completed, you can start the new Unomi instance using:

Apache Unomi 2.x - Documentation - 85

unomi:start

You should then validate that all the data has been properly migrated. For example you could issue a

command to list the profiles:

profile-list

7.7. IMPORTANT CHANGES IN PUBLIC SERVLETS SINCE
VERSION 1.5.5 AND 2.0.0

What used to be dedicated servlets are now part of the REST endpoints. Prior to version 1.5.5 the

following servlets were used:

• /context.js /context.json

• /eventcollector

• /client

In version 2.0.0 and 1.5.5 and later you have to use the new cxs REST endpoints:

• /cxs/context.js /cxs/context.json

• /cxs/eventcollector

• /cxs/client

The old servlets have been deprecated and will be removed in a future major version, so make sure to

update your client applications.

8. QUERIES AND AGGREGATIONS

Apache Unomi contains a query endpoint that is quite powerful. It provides ways to perform queries

that can quickly get result counts, apply metrics such as sum/min/max/avg or even use powerful

aggregations.

In this section we will show examples of requests that may be built using this API.

8.1. QUERY COUNTS

Query counts are highly optimized queries that will count the number of objects that match a certain

condition without retrieving the results. This can be used for example to quickly figure out how many

objects will match a given condition before actually retrieving the results. It uses ElasticSearch/Lucene

optimizations to avoid the cost of loading all the resulting objects.

Here’s an example of a query:

Apache Unomi 2.x - Documentation - 86

curl -X POST http://localhost:8181/cxs/query/profile/count \

--user karaf:karaf \

-H "Content-Type: application/json" \

-d @- <<'EOF'

{

 "parameterValues": {

 "subConditions": [

 {

 "type": "profilePropertyCondition",

 "parameterValues": {

 "propertyName": "systemProperties.isAnonymousProfile",

 "comparisonOperator": "missing"

 }

 },

 {

 "type": "profilePropertyCondition",

 "parameterValues": {

 "propertyName": "properties.nbOfVisits",

 "comparisonOperator": "equals",

 "propertyValueInteger": 1

 }

 }

],

 "operator": "and"

 },

 "type": "booleanCondition"

}

EOF

The above result will return the profile count of all the profiles

Result will be something like this:

2084

8.2. METRICS

Metric queries make it possible to apply functions to the resulting property. The supported metrics are:

• sum

• avg

• min

• max

It is also possible to request more than one metric in a single request by concatenating them with a "/" in

the URL. Here’s an example request that uses the sum and avg metrics:

Apache Unomi 2.x - Documentation - 87

curl -X POST http://localhost:8181/cxs/query/session/profile.properties.nbOfVisits/sum/avg \

--user karaf:karaf \

-H "Content-Type: application/json" \

-d @- <<'EOF'

{

 "parameterValues": {

 "subConditions": [

 {

 "type": "sessionPropertyCondition",

 "parameterValues": {

 "comparisonOperator": "equals",

 "propertyName": "scope",

 "propertyValue": "digitall"

 }

 }

],

 "operator": "and"

 },

 "type": "booleanCondition"

}

EOF

The result will look something like this:

{

 "_avg":1.0,

 "_sum":9.0

}

8.3. AGGREGATIONS

Aggregations are a very powerful way to build queries in Apache Unomi that will collect and aggregate

data by filtering on certain conditions.

Aggregations are composed of : - an object type and a property on which to aggregate - an aggregation

setup (how data will be aggregated, by date, by numeric range, date range or ip range) - a condition

(used to filter the data set that will be aggregated)

8.3.1. AGGREGATION TYPES

Aggregations may be of different types. They are listed here below.

DATE

Date aggregations make it possible to automatically generate "buckets" by time periods. For more

information about the format, it is directly inherited from ElasticSearch and you may find it here:

https://www.elastic.co/guide/en/elasticsearch/reference/5.6/search-aggregations-bucket-datehistogram-

aggregation.html

Apache Unomi 2.x - Documentation - 88

https://www.elastic.co/guide/en/elasticsearch/reference/5.6/search-aggregations-bucket-datehistogram-aggregation.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.6/search-aggregations-bucket-datehistogram-aggregation.html

Here’s an example of a request to retrieve a histogram of by day of all the session that have been create

by newcomers (nbOfVisits=1)

curl -X POST http://localhost:8181/cxs/query/session/timeStamp \

--user karaf:karaf \

-H "Content-Type: application/json" \

-d @- <<'EOF'

{

 "aggregate": {

 "type": "date",

 "parameters": {

 "interval": "1d",

 "format": "yyyy-MM-dd"

 }

 },

 "condition": {

 "type": "booleanCondition",

 "parameterValues": {

 "operator": "and",

 "subConditions": [

 {

 "type": "sessionPropertyCondition",

 "parameterValues": {

 "propertyName": "scope",

 "comparisonOperator": "equals",

 "propertyValue": "acme"

 }

 },

 {

 "type": "sessionPropertyCondition",

 "parameterValues": {

 "propertyName": "profile.properties.nbOfVisits",

 "comparisonOperator": "equals",

 "propertyValueInteger": 1

 }

 }

]

 }

 }

}

EOF

The above request will produce a similar that looks like this:

Apache Unomi 2.x - Documentation - 89

{

 "_all": 8062,

 "_filtered": 4085,

 "2018-10-02": 3,

 "2018-10-03": 17,

 "2018-10-04": 18,

 "2018-10-05": 19,

 "2018-10-06": 23,

 "2018-10-07": 18,

 "2018-10-08": 20

}

You can see that we retrieve the count of newcomers aggregated by day.

DATE RANGE

Date ranges make it possible to "bucket" dates, for example to regroup profiles by their birth date as in

the example below:

Apache Unomi 2.x - Documentation - 90

curl -X POST http://localhost:8181/cxs/query/profile/properties.birthDate \

--user karaf:karaf \

-H "Content-Type: application/json" \

-d @- <<'EOF'

{

 "aggregate": {

 "property": "properties.birthDate",

 "type": "dateRange",

 "dateRanges": [

 {

 "key": "After 2009",

 "from": "now-10y/y",

 "to": null

 },

 {

 "key": "Between 1999 and 2009",

 "from": "now-20y/y",

 "to": "now-10y/y"

 },

 {

 "key": "Between 1989 and 1999",

 "from": "now-30y/y",

 "to": "now-20y/y"

 },

 {

 "key": "Between 1979 and 1989",

 "from": "now-40y/y",

 "to": "now-30y/y"

 },

 {

 "key": "Between 1969 and 1979",

 "from": "now-50y/y",

 "to": "now-40y/y"

 },

 {

 "key": "Before 1969",

 "from": null,

 "to": "now-50y/y"

 }

]

 },

 "condition": {

 "type": "matchAllCondition",

 "parameterValues": {}

 }

}

EOF

The resulting JSON response will look something like this:

Apache Unomi 2.x - Documentation - 91

{

 "_all":4095,

 "_filtered":4095,

 "Before 1969":2517,

 "Between 1969 and 1979":353,

 "Between 1979 and 1989":336,

 "Between 1989 and 1999":337,

 "Between 1999 and 2009":35,

 "After 2009":0,

 "_missing":517

}

You can find more information about the date range formats here: https://www.elastic.co/guide/en/

elasticsearch/reference/5.6/search-aggregations-bucket-daterange-aggregation.html

NUMERIC RANGE

Numeric ranges make it possible to use "buckets" for the various ranges you want to classify.

Here’s an example of a using numeric range to regroup profiles by number of visits:

Apache Unomi 2.x - Documentation - 92

https://www.elastic.co/guide/en/elasticsearch/reference/5.6/search-aggregations-bucket-daterange-aggregation.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.6/search-aggregations-bucket-daterange-aggregation.html

curl -X POST http://localhost:8181/cxs/query/profile/properties.nbOfVisits \

--user karaf:karaf \

-H "Content-Type: application/json" \

-d @- <<'EOF'

{

 "aggregate": {

 "property": "properties.nbOfVisits",

 "type": "numericRange",

 "numericRanges": [

 {

 "key": "Less than 5",

 "from": null,

 "to": 5

 },

 {

 "key": "Between 5 and 10",

 "from": 5,

 "to": 10

 },

 {

 "key": "Between 10 and 20",

 "from": 10,

 "to": 20

 },

 {

 "key": "Between 20 and 40",

 "from": 20,

 "to": 40

 },

 {

 "key": "Between 40 and 80",

 "from": 40,

 "to": 80

 },

 {

 "key": "Greater than 100",

 "from": 100,

 "to": null

 }

]

 },

 "condition": {

 "type": "matchAllCondition",

 "parameterValues": {}

 }

}

EOF

This will produce an output that looks like this:

Apache Unomi 2.x - Documentation - 93

{

 "_all":4095,

 "_filtered":4095,

 "Less than 5":3855,

 "Between 5 and 10":233,

 "Between 10 and 20":7,

 "Between 20 and 40":0,

 "Between 40 and 80":0,

 "Greater than 100":0

}

9. PROFILE IMPORT & EXPORT

The profile import and export feature in Apache Unomi is based on configurations and consumes or

produces CSV files that contain profiles to be imported and exported.

9.1. IMPORTING PROFILES

Only ftp, sftp, ftps and file are supported in the source path. For example:

file:///tmp/?fileName=profiles.csv&move=.done&consumer.delay=25s

Where:

• fileName Can be a pattern, for example include=.*.csv instead of fileName=… to consume all CSV

files. By default the processed files are moved to .camel folder you can change it using the move

option.

• consumer.delay Is the frequency of polling in milliseconds. For example, 20000 milliseconds is 20

seconds. This frequency can also be 20s. Other possible format are: 2h30m10s = 2 hours and 30

minutes and 10 seconds.

See http://camel.apache.org/ftp.html and http://camel.apache.org/file2.html to build more complex

source path. Also be careful with FTP configuration as most servers no longer support plain text FTP and

you should use SFTP or FTPS instead, but they are a little more difficult to configure properly. It is

recommended to test the connection with an FTP client first before setting up these source paths to

ensure that everything works properly. Also on FTP connections most servers require PASSIVE mode so

you can specify that in the path using the passiveMode=true parameter.

Here are some examples of FTPS and SFTP source paths:

sftp://USER@HOST/PATH?password=PASSWORD&include=.*.csv

ftps://USER@HOST?password=PASSWORD&fileName=profiles.csv&passiveMode=true

Where:

Apache Unomi 2.x - Documentation - 94

http://camel.apache.org/ftp.html
http://camel.apache.org/file2.html

• USER is the user name of the SFTP/FTPS user account to login with

• PASSWORD is the password for the user account

• HOST is the host name (or IP address) of the host server that provides the SFTP / FTPS server

• PATH is a path to a directory inside the user’s account where the file will be retrieved.

9.1.1. IMPORT API

Apache Unomi provides REST endpoints to manage import configurations:

 GET /cxs/importConfiguration

 GET /cxs/importConfiguration/{configId}

 POST /cxs/importConfiguration

 DELETE /cxs/importConfiguration/{configId}

This is how a oneshot import configuration looks like:

{

 "itemId": "importConfigId",

 "itemType": "importConfig",

 "name": "Import Config Sample",

 "description": "Sample description",

 "configType": "oneshot", //Config type can be 'oneshot' or 'recurrent'

 "properties": {

 "mapping": {

 "email": 0, //<Apache Unomi Property Id> : <Column Index In the CSV>

 "firstName": 2,

 ...

 }

 },

 "columnSeparator": ",", //Character used to separate columns

 "lineSeparator": "\\n", //Character used to separate lines (\n or \r)

 "multiValueSeparator": ";", //Character used to separate values for multivalued columns

 "multiValueDelimiter": "[]", //Character used to wrap values for multivalued columns

 "status": "SUCCESS", //Status of last execution

 "executions": [//(RETURN) Last executions by default only last 5 are returned

 ...

],

 "mergingProperty": "email", //Apache Unomi Property Id used to check duplicates

 "overwriteExistingProfiles": true, //Overwrite profiles that have duplicates

 "propertiesToOverwrite": "firstName, lastName, ...", //If last is set to true, which property to

overwrite, 'null' means overwrite all

 "hasHeader": true, //CSV file to import contains a header line

 "hasDeleteColumn": false //CSV file to import doesn't contain a TO DELETE column (if it

contains, will be the last column)

}

A recurrent import configuration is similar to the previous one with some specific information to add to

the JSON like:

Apache Unomi 2.x - Documentation - 95

{

 ...

 "configType": "recurrent",

 "properties": {

 "source":

"ftp://USER@SERVER[:PORT]/PATH?password=xxx&fileName=profiles.csv&move=.done&consumer.

delay=20000",

 // Only 'ftp', 'sftp', 'ftps' and 'file' are supported in the 'source' path

 // eg. file:///tmp/?fileName=profiles.csv&move=.done&consumer.delay=25s

 // 'fileName' can be a pattern eg 'include=.*.csv' instead of 'fileName=...' to consume all CSV

files

 // By default the processed files are moved to '.camel' folder you can change it using the

'move' option

 // 'consumer.delay' is the frequency of polling. '20000' (in milliseconds) means 20 seconds.

Can be also '20s'

 // Other possible format are: '2h30m10s' = 2 hours and 30 minutes and 10 seconds

 "mapping": {

 ...

 }

 },

 ...

 "active": true, //If true the polling will start according to the 'source' configured above

 ...

}

9.2. EXPORTING PROFILES

Only ftp, sftp, ftps and `file are supported in the source path. For example:

file:///tmp/?fileName=profiles-export-${date:now:yyyyMMddHHmm}.csv&fileExist=Append)

sftp://USER@HOST/PATH?password=PASSWORD&binary=true&fileName=profiles-export-

${date:now:yyyyMMddHHmm}.csv&fileExist=Append

ftps://USER@HOST?password=PASSWORD&binary=true&fileName=profiles-export-

${date:now:yyyyMMddHHmm}.csv&fileExist=Append&passiveMode=true

As you can see in the examples above, you can inject variables in the produced file

name ${date:now:yyyyMMddHHmm} is the current date formatted with the pattern yyyyMMddHHmm.

fileExist option put as Append will tell the file writer to append to the same file for each execution of the

export configuration. You cam omit this option to write a profile per file.

See http://camel.apache.org/ftp.html and http://camel.apache.org/file2.html to build more complex

destination path.

9.2.1. EXPORT API

Apache Unomi provides REST endpoints to manage export configurations:

Apache Unomi 2.x - Documentation - 96

http://camel.apache.org/ftp.html and http://camel.apache.org/file2.html to

 GET /cxs/exportConfiguration

 GET /cxs/exportConfiguration/{configId}

 POST /cxs/exportConfiguration

 DELETE /cxs/exportConfiguration/{configId}

This is how a oneshot export configuration looks like:

{

 "itemId": "exportConfigId",

 "itemType": "exportConfig",

 "name": "Export configuration sample",

 "description": "Sample description",

 "configType": "oneshot",

 "properties": {

 "period": "2m30s",

 "segment": "contacts",

 "mapping": {

 "0": "firstName",

 "1": "lastName",

 ...

 }

 },

 "columnSeparator": ",",

 "lineSeparator": "\\n",

 "multiValueSeparator": ";",

 "multiValueDelimiter": "[]",

 "status": "RUNNING",

 "executions": [

 ...

]

}

A recurrent export configuration is similar to the previous one with some specific information to add to

the JSON like:

Apache Unomi 2.x - Documentation - 97

{

 ...

 "configType": "recurrent",

 "properties": {

 "destination": "sftp://USER@SERVER:PORT/PATH?password=XXX&fileName=profiles-export-

${date:now:yyyyMMddHHmm}.csv&fileExist=Append",

 "period": "2m30s", //Same as 'consumer.delay' option in the import source path

 "segment": "contacts", //Segment ID to use to collect profiles to export

 "mapping": {

 ...

 }

 },

 ...

 "active": true, //If true the configuration will start polling upon save until the user deactivate

it

 ...

}

9.3. CONFIGURATION IN DETAILS

First configuration you need to change would be the configuration type of your import / export feature

(code name router) in the etc/unomi.custom.system.properties file (creating it if necessary):

#Configuration Type values {'nobroker', 'kafka'}

org.apache.unomi.router.config.type=nobroker

By default the feature is configured (as above) to use no external broker, which means to handle

import/export data it will use in memory queues (In the same JVM as Apache Unomi). If you are

clustering Apache Unomi, most important thing to know about this type of configuration is that each

Apache Unomi will handle the import/export task by itself without the help of other nodes (No Load-

Distribution).

Changing this property to kafka means you have to provide the Apache Kafka configuration, and in the

opposite of the nobroker option import/export data will be handled using an external broker (Apache

Kafka), this will lighten the burden on the Apache Unomi machines.

You may use several Apache Kafka instance, 1 per N Apache Unomi nodes for better application scaling.

To enable using Apache Kafka you need to configure the feature as follows:

#Configuration Type values {'nobroker', 'kafka'}

org.apache.unomi.router.config.type=kafka

Uncomment and update Kafka settings to use Kafka as a broker

Apache Unomi 2.x - Documentation - 98

#Kafka

org.apache.unomi.router.kafka.host=localhost

org.apache.unomi.router.kafka.port=9092

org.apache.unomi.router.kafka.import.topic=import-deposit

org.apache.unomi.router.kafka.export.topic=export-deposit

org.apache.unomi.router.kafka.import.groupId=unomi-import-group

org.apache.unomi.router.kafka.export.groupId=unomi-import-group

org.apache.unomi.router.kafka.consumerCount=10

org.apache.unomi.router.kafka.autoCommit=true

There is couple of properties you may want to change to fit your needs, one of them is the

import.oneshot.uploadDir which will tell Apache Unomi where to store temporarily the CSV files to

import in Oneshot mode, it’s a technical property to allow the choice of the convenient disk space where

to store the files to be imported. It defaults to the following path under the Apache Unomi Karaf (It is

recommended to change the path to a more convenient one).

#Import One Shot upload directory

org.apache.unomi.router.import.oneshot.uploadDir=${karaf.data}/tmp/unomi_oneshot_import_conf

igs/

Next two properties are max sizes for executions history and error reports, for some reason you don’t

want Apache Unomi to report all the executions history and error reports generated by the executions of

an import/export configuration. To change this you have to change the default values of these

properties.

#Import/Export executions history size

org.apache.unomi.router.executionsHistory.size=5

#errors report size

org.apache.unomi.router.executions.error.report.size=200

Final one is about the allowed endpoints you can use when building the source or destionation path, as

mentioned above we can have a path of type file, ftp, ftps, sftp. You can make it less if you want to omit

some endpoints (eg. you don’t want to permit the use of non secure FTP).

#Allowed source endpoints

org.apache.unomi.router.config.allowedEndpoints=file,ftp,sftp,ftps

10. CONSENT MANAGEMENT

10.1. CONSENT API

Starting with Apache Unomi 1.3, a new API for consent management is now available. This API is

designed to be able to store/retrieve/update visitor consents in order to comply with new privacy

Apache Unomi 2.x - Documentation - 99

regulations such as the GDPR.

10.1.1. PROFILES WITH CONSENTS

Visitor profiles now contain a new Consent object that contains the following information:

• a scope

• a type identifier for the consent. This can be any key to reference a consent. Note that Unomi does

not manage consent definitions, it only stores/retrieves consents for each profile based on this type

• a status : GRANT, DENY or REVOKED

• a status date (the date at which the status was updated)

• a revocation date, in order to comply with GDPR this is usually set at two years

Consents are stored as a sub-structure inside a profile. To retrieve the consents of a profile you can

simply retrieve a profile with the following request:

curl -X POST http://localhost:8181/cxs/context.json?sessionId=1234 \

-H "Content-Type: application/json" \

-d @- <<'EOF'

{

 "source": {

 "itemId":"homepage",

 "itemType":"page",

 "scope":"example"

 }

}

EOF

Here is an example of a response with a Profile with a consent attached to it:

Apache Unomi 2.x - Documentation - 100

https://en.wikipedia.org/wiki/General_Data_Protection_Regulation

{

 "profileId": "18afb5e3-48cf-4f8b-96c4-854cfaadf889",

 "sessionId": "1234",

 "profileProperties": null,

 "sessionProperties": null,

 "profileSegments": null,

 "filteringResults": null,

 "personalizations": null,

 "trackedConditions": [],

 "anonymousBrowsing": false,

 "consents": {

 "example/newsletter": {

 "scope": "example",

 "typeIdentifier": "newsletter",

 "status": "GRANTED",

 "statusDate": "2018-05-22T09:27:09Z",

 "revokeDate": "2020-05-21T09:27:09Z"

 }

 }

}

It is of course possible to have multiple consents defined for a single visitor profile.

10.1.2. CONSENT TYPE DEFINITIONS

Apache Unomi does not manage consent definitions, it leaves that to an external system (for example a

CMS) so that it can handle user-facing UIs to create, update, internationalize and present consent

definitions to end users.

The only thing that is import to Apache Unomi to manage visitor consents is a globally unique key, that

is called the consent type.

10.1.3. CREATING / UPDATE A VISITOR CONSENT

A new built-in event type called "modifyConsent" can be sent to Apache Unomi to update a consent for

the current profile.

Here is an example of such an event:

Apache Unomi 2.x - Documentation - 101

{

 "events": [

 {

 "scope": "example",

 "eventType": "modifyConsent",

 "source": {

 "itemType": "page",

 "scope": "example",

 "itemId": "anItemId"

 },

 "target": {

 "itemType": "anyType",

 "scope": "example",

 "itemId": "anyItemId"

 },

 "properties": {

 "consent": {

 "typeIdentifier": "newsletter",

 "scope": "example",

 "status": "GRANTED",

 "statusDate": "2018-05-22T09:27:09.473Z",

 "revokeDate": "2020-05-21T09:27:09.473Z"

 }

 }

 }

]

}

You could send it using the following curl request:

Apache Unomi 2.x - Documentation - 102

curl -X POST http://localhost:8181/cxs/context.json?sessionId=1234 \

-H "Content-Type: application/json" \

-d @- <<'EOF'

{

 "source":{

 "itemId":"homepage",

 "itemType":"page",

 "scope":"example"

 },

 "events": [

 {

 "scope":"example",

 "eventType":"modifyConsent",

 "source":{

 "itemType":"page",

 "scope":"example",

 "itemId":"anItemId"

 },

 "target":{

 "itemType":"anyType",

 "scope":"example",

 "itemId":"anyItemId"},

 "properties":{

 "consent":{

 "typeIdentifier":"newsletter",

 "scope":"example",

 "status":"GRANTED",

 "statusDate":"2018-05-22T09:27:09.473Z",

 "revokeDate":"2020-05-21T09:27:09.473Z"

 }

 }

 }

]

}

EOF

10.1.4. HOW IT WORKS (INTERNALLY)

Upon receiving this event, Apache Unomi will trigger the modifyAnyConsent rule that has the following

definition:

Apache Unomi 2.x - Documentation - 103

{

 "metadata" : {

 "id": "modifyAnyConsent",

 "name": "Modify any consent",

 "description" : "Modify any consent and sets the consent in the profile",

 "readOnly":true

 },

 "condition" : {

 "type": "modifyAnyConsentEventCondition",

 "parameterValues": {

 }

 },

 "actions" : [

 {

 "type": "modifyConsentAction",

 "parameterValues": {

 }

 }

]

}

As we can see this rule is pretty simple it will simply execute the modifyConsentAction that is

implemented by the ModifyConsentAction Java class

This class will update the current visitor profile to add/update/revoke any consents that are included in

the event.

11. PRIVACY MANAGEMENT

Apache Unomi provides an endpoint to manage visitor privacy. You will find in this section information

about what it includes as well as how to use it.

11.1. SETTING UP ACCESS TO THE PRIVACY ENDPOINT

The privacy endpoint is a bit special, because despite being protected by basic authentication as the rest

of the REST API is is actually designed to be available to end-users.

So in effect it should usually be proxied so that public internet users can access the endpoint but the

proxy should also check if the profile ID wasn’t manipulated in some way.

Apache Unomi doesn’t provide (for the moment) such a proxy, but basically it should do the following:

1. check for potential attack activity (could be based on IDS policies or even rate detection), and at the

minimum check that the profile ID cookie seems authentic (for example by checking that it is often

coming from the same IP or the same geographic location)

Apache Unomi 2.x - Documentation - 104

https://github.com/apache/unomi/blob/9f1bab437fd93826dc54d318ed00d3b2e3161437/plugins/baseplugin/src/main/java/org/apache/unomi/plugins/baseplugin/actions/ModifyConsentAction.java

2. proxy to /cxs/privacy

11.2. ANONYMIZING A PROFILE

It is possible to anonymize a profile, meaning it will remove all "identifying" property values from the

profile. Basically all properties with the tag personalIdentifierProperties will be purged from the profile.

Here’s an example of a request to anonymize a profile:

curl -X POST http://localhost:8181/cxs/profiles/{profileID}/anonymize?scope=ASCOPE

where {profileID} must be replaced by the actual identifier of a profile and ASCOPE must be replaced by

a scope identifier.

11.3. DOWNLOADING PROFILE DATA

It is possible to download the profile data of a user. This will only download the profile for a user using

the specified ID as a cookie value.

Warning: this operation can also be sensitive so it would be better to protected with a proxy that can

perform some validation on the requests to make sure no one is trying to download a profile using some

kind of "guessing" of profile IDs.

curl -X GET http://localhost:8181/cxs/client/myprofile.[json,csv,yaml,text] \

--cookie "context-profile-id=PROFILE-ID"

where PROFILE-ID is the profile identifier for which to download the profile.

11.4. DELETING A PROFILE

It is possible to delete a profile, but this works a little differently than you might expect. In all cases the

data contained in the profile will be completely erased. If the withData optional flag is set to true, all past

event and session data will also be detached from the current profile and anonymized.

curl -X DELETE http://localhost:8181/cxs/profiles/{profileID}?withData=false --user karaf:karaf

where {profileID} must be replaced by the actual identifier of a profile and the withData specifies

whether the data associated with the profile must be anonymized or not

11.5. RELATED

You might also be interested in the Consent API section that describe how to manage profile consents.

Apache Unomi 2.x - Documentation - 105

12. CLUSTER SETUP

12.1. CLUSTER SETUP

Apache Karaf relies on Apache Karaf Cellar, which in turn uses Hazelcast to discover and configure its

cluster.

You can control most of the important clustering settings through the centralized configuration file at

etc/unomi.custom.system.properties

And notably using the following properties:

org.apache.unomi.hazelcast.group.name=${env:UNOMI_HAZELCAST_GROUP_NAME:-cellar}

org.apache.unomi.hazelcast.group.password=${env:UNOMI_HAZELCAST_GROUP_PASSWORD:-pass}

This list can be comma separated and use ranges such as 192.168.1.0-7,192.168.1.21

org.apache.unomi.hazelcast.tcp-ip.members=${env:UNOMI_HAZELCAST_TCPIP_MEMBERS:-

127.0.0.1}

org.apache.unomi.hazelcast.tcp-ip.interface=${env:UNOMI_HAZELCAST_TCPIP_INTERFACE:-

127.0.0.1}

org.apache.unomi.hazelcast.network.port=${env:UNOMI_HAZELCAST_NETWORK_PORT:-5701}

If you need more fine-grained control over the Hazelcast configuration you could also edit the following

file:

etc/hazelcast.xml

Note that it would be best to keep all configuration in the centralized custom configuration, for example

by adding placeholders in the hazelcast.xml file if need be and adding the properties to the centralized

configuration file.

13. REFERENCE

13.1. USEFUL APACHE UNOMI URLS

In this section we will list some useful URLs that can be used to quickly access parts of Apache Unomi

that can help you understand or diagnose what is going on in the system.

You can of course find more information about the REST API in the related section in the Apache Unomi

website.

For these requests it can be nice to use a browser (such as Firefox) that understands JSON to make it

easier to view the results as the returned JSON is not beautified (another possiblity is a tool such as

Postman).

Apache Unomi 2.x - Documentation - 106

http://unomi.apache.org/documentation.html

Important : all URLs are relative to the private Apache Unomi URL, by default: https://localhost:9443

Table 2. Useful URLs

Path Method Description

/cxs/profiles/properties GET Listing deployed properties

/cxs/definitions/conditions GET Listing deployed conditions

/cxs/definitions/actions GET Listing deployed actions

/cxs/profiles/PROFILE_ID GET Dumping a profile in JSON

/cxs/profiles/PROFILE_ID/sessions GET Listing sessions for a profile

/cxs/profiles/sessions/SESSION_ID GET Dumping a session in JSON

/cxs/profiles/sessions/SESSION_ID

/events

GET Listing events for a session. This

query can have additional such

as eventTypes, q (query), offset,

size, sort. See the related section

in the REST API for details.

/cxs/events/search POST Listing events for a profile. You

will need to provide a query in

the body of the request that looks

something like this (and

documentation is available in the

REST API) : { "offset" : 0, "limit" :

20, "condition" : { "type":

"eventPropertyCondition",

"parameterValues" : {

"propertyName" : "profileId",

"comparisonOperator" : "equals",

"propertyValue" : "PROFILE_ID" }

} } where PROFILE_ID is a profile

identifier. This will indeed

retrieve all the events for a given

profile.

/cxs/rules/statistics GET Get all rule execution statistics

/cxs/rules/statistics DELETE Reset all rule execution statistics

to 0

13.2. HOW PROFILE TRACKING WORKS

In this section you will learn how Apache Unomi keeps track of visitors.

13.2.1. STEPS

1. A visitor comes to a website

Apache Unomi 2.x - Documentation - 107

https://localhost:9443
https://unomi.apache.org/rest-api-doc/#1019321624
https://unomi.apache.org/rest-api-doc/#1019321624
https://unomi.apache.org/rest-api-doc/#1768188821
https://unomi.apache.org/rest-api-doc/#1768188821

2. The web server resolves a previous request session ID if it exists, or if it doesn’t it create a new

sessionID

3. A request to Apache Unomi’s /cxs/context.json servlet is made passing the web server session ID as a

query parameter

4. Unomi uses the sessionID and tries to load an existing session, if none is found a new session is

created with the ID passed by the web server

5. If a session was found, the profile ID is extracted from the session and if it not found, Unomi looks

for a cookie called context-profile-id to read the profileID. If no profileID is found or if the session

didn’t exist, a new profile ID is created by Apache Unomi

6. If the profile ID existed, the corresponding profile is loaded by Apache Unomi, otherwise a new

profile is created

7. If events were passed along with the request to the context.json endpoint, they are processed

against the profile

8. The updated profile is sent back as a response to the context.json request. Along with the response

It is important to note that the profileID is always server-generated. Injecting a custom cookie with a

non-valid profile ID will result in failure to load the profile. Profile ID are UUIDs, which make them

(pretty) safe from brute- forcing.

13.3. CONTEXT REQUEST FLOW

Here is an overview of how Unomi processes incoming requests to the ContextServlet.

Apache Unomi 2.x - Documentation - 108

13.4. DATA MODEL OVERVIEW

Apache Unomi gathers information about users actions, information that is processed and stored by

Unomi services. The collected information can then be used to personalize content, derive insights on

user behavior, categorize the user profiles into segments along user-definable dimensions or acted upon

by algorithms.

The following data model only contains the classes and properties directly related to the most important

objects of Apache Unomi. There are other classes that are less central to the functionality but all the

Apache Unomi 2.x - Documentation - 109

major ones are represented in the diagram below:

We will detail many of these classes in the document below.

13.5. SCOPE

Scopes are objects which simply contains unique strings that are used to "classify" objects. For example,

when using scopes with a web content management system, a scope could be associated with a site

identifier or even a host name.

In events, scopes are used to validate event. Events with scope which are unknown by the system will be

considered as invalid

Unomi defines a built-in scope (called systemscope) that clients can use to

share data across scopes.

13.5.1. EXAMPLE

In the following example, the scope uses the unique identifier of a web site called “digitall”.

Apache Unomi 2.x - Documentation - 110

{

 ... other fields of an object type ...

 “scope”: “digitall”

 ... other fields of an object type ...

}

13.6. ITEM

Unomi structures the information it collects using the concept of Item which provides the base

information (an identifier and a type) the context server needs to process and store the data. Items are

persisted according to their type (structure) and identifier (identity). This base structure can be

extended, if needed, using properties in the form of key-value pairs.

These properties are further defined by the Item’s type definition which explicits the Item’s structure

and semantics. By defining new types, users specify which properties (including the type of values they

accept) are available to items of that specific type.

Unomi defines default value types: date, email, integer and string, all pretty self-explanatory. While you

can think of these value types as "primitive" types, it is possible to extend Unomi by providing additional

value types.

Additionally, most items are also associated to a scope, which is a concept that Unomi uses to group

together related items. A given scope is represented in Unomi by a simple string identifier and usually

represents an application or set of applications from which Unomi gathers data, depending on the

desired analysis granularity. In the context of web sites, a scope could, for example, represent a site or

family of related sites being analyzed. Scopes allow clients accessing the context server to filter data to

only see relevant data.

Items are a generic object, that is common to many objects in the data model. It contains the following

fields, that are inherited by other objects that inherit from it.

13.6.1. STRUCTURE DEFINITION

Inherits all the fields from: n/a

Field Type Description

itemId String This field contains a unique

identifier (usually a UUID) that

uniquely identifies the item in

the whole system. It should be

unique to a Unomi installation

Apache Unomi 2.x - Documentation - 111

Field Type Description

itemType String A string containing the subtype of

this item. Examples are : event,

profile, session, … any class that

inherits from the Item class will

have a unique and different

itemType value.

scope String (optional) If present, this will contain a

scope identifier. A scope is just a

way to regroup objects notably

for administrative purposes. For

example, when integrating with a

CMS a scope could be mapped to

a website. The “system” scope

value is reserved for values that

are used internally by Apache

Unomi

13.7. METADATA

The Metadata object is an object that contains additional information about an object. It is usually

associated with an Item object (see MetadataItem below).

13.7.1. STRUCTURE DEFINITION

Inherits all the fields from: n/a

Field Type Description

id String This field contains a unique

identifier (UUID) for the object

the metadata object is attached

to. It is usually a copy of the

itemId field on an Item object.

name String A name for the associated object.

Usually, this name will be

displayed on the user interface

description String (optional) A description of the associated

object. Will also usually be used

in user interfaces

scope String The scope for the associated

object.

tags String array A list of tags for the associated

object, this list may be edited

through a UI.

Apache Unomi 2.x - Documentation - 112

Field Type Description

systemTags String array A (reserved) list of tags for the

associated object. This is usually

populated through JSON

descriptors and is not meant to

be modified by end users. These

tags may include values such as

“profileProperties” that help

classify associated objects.

enabled Boolean Indicates whether the associated

is enabled or not. For example, a

rule may be disabled using this

field.

missingPlugins Boolean This is used for associated objects

that require plugins to be

deployed to work. If the plugin is

not deployed, this object will not

perform its function. For

example if a rule is registered but

the condition or actions it needs

are not installed, the rule will not

be used.

hidden Boolean Specifies whether the associated

object should be visible in UIs or

not

readOnly Boolean Specifies whether editing of the

associated object should be

allowed or not.

13.7.2. EXAMPLE

This example of a Metadata object structure was taken from a List associated object. See the

MetadataItem to understand how the two fit together.

{

 "id": "firstListId",

 "name": "First list",

 "description": "Description of the first list.",

 "scope": "digitall",

 "tags": [],

 "systemTags": [],

 "enabled": true,

 "missingPlugins": false,

 "hidden": false,

 "readOnly": false

}

Apache Unomi 2.x - Documentation - 113

13.8. METADATAITEM

13.8.1. STRUCTURE DEFINITION

Inherits all the fields from: Item

Field Type Description

metadata Metadata This object contains just one field,

of type Metadata as define just

before this object type.

13.8.2. EXAMPLE

The following example is actually the definition of a List object, which is simply a MetadataItem sub-type

with no additional fields. We can see here the “itemId” and “itemType” fields that come from the Item

parent class and the “metadata” field that contains the object structure coming from the Metadata object

type.

{

 "itemId": "userListId",

 "itemType": "userList",

 "metadata": {

 "id": "userListId",

 "name": "First list",

 "description": "Description of the first list.",

 "scope": "digitall",

 "tags": [],

 "systemTags": [],

 "enabled": true,

 "missingPlugins": false,

 "hidden": false,

 "readOnly": false

 }

}

13.9. EVENT

Events represent something that is happening at a specific time (they are timestamped). They can be

used to track visitor behavior, or even for back-channel system-to-system (as for example for a login)

communication. Examples of events may include a click on a link on a web page, a login, a form

submission, a page view or any other time-stamped action that needs to be tracked.

Events are persisted and immutable, and may be queried or aggregated to produce powerful reports.

Events can also be triggered as part of Unomi’s internal processes for example when a rule is triggered.

Apache Unomi 2.x - Documentation - 114

13.9.1. FIELDS

Inherits all the fields from: Item

Field Type Description

eventType String Contains an identifier for the

event type, which may be any

value as Apache Unomi does not

come with strict event type

definitions and accepts custom

events types. The system comes

with built-in event types such as

“view”, “form”, “login”,

“updateProperties” but additional

event types may of course be

used by developers integrating

with Apache Unomi.

sessionId String The unique identifier of a Session

object

profileId String The unique identifier of a Profile

object

timestamp Date The precise date at which the

Event was received by Unomi.

This date is in the ISO 8601

format.

scope String (Optional, event type specific) An

identifier for a scope

persistent Boolean Defines if the event should be

persisted or not (default: true)

source Item An Item that is the source of the

event. For example a web site, an

application name, a web page

target Item An Item that is the target of the

event. For example a button, a

link, a file or a page

properties Map<String,Object> Properties for the event. These

will change depending on the

event type.

flattenedProperties Map<String,Object> Properties that will be persisted

as flattened. These will change

depending on the event type.

Apache Unomi 2.x - Documentation - 115

https://en.wikipedia.org/wiki/ISO_8601

13.9.2. EVENT TYPES

Event types are completely open, and any new event type will be accepted by Apache Unomi.

Apache Unomi also comes with an extensive list of built-in event types you can find in the reference

section of this manual.

13.10. PROFILE

By processing events, Unomi progressively builds a picture of who the user is and how they behave. This

knowledge is embedded in Profile object. A profile is an Item with any number of properties and

optional segments and scores. Unomi provides default properties to cover common data (name, last

name, age, email, etc.) as well as default segments to categorize users. Unomi users are, however, free

and even encouraged to create additional properties and segments to better suit their needs.

Contrary to other Unomi items, profiles are not part of a scope since we want to be able to track the

associated user across applications. For this reason, data collected for a given profile in a specific scope

is still available to any scoped item that accesses the profile information.

It is interesting to note that there is not necessarily a one to one mapping between users and profiles as

users can be captured across applications and different observation contexts. As identifying information

might not be available in all contexts in which data is collected, resolving profiles to a single physical

user can become complex because physical users are not observed directly. Rather, their portrait is

progressively patched together and made clearer as Unomi captures more and more traces of their

actions. Unomi will merge related profiles as soon as collected data permits positive association between

distinct profiles, usually as a result of the user performing some identifying action in a context where

the user hadn’t already been positively identified.

13.10.1. STRUCTURE DEFINITION

Inherits all the fields from: Item

Field name Type Description

properties Map<String,Object> All the (user-facing) properties

for the profile

systemProperties Map<String,Object> Internal properties used to track

things such as goals reached,

merges with other profiles, lists

the profile belongs to.

segments String set A set of Segment identifiers that

profile is (currently) associated

with

scores Map<String,Integer> A map of scores with the score

identifier as the key and the score

total value as the value.

Apache Unomi 2.x - Documentation - 116

Field name Type Description

@Deprecated mergedWith String If merged with another profile,

the profile identifier to the

master profile is stored here

consents Map<String,Consent> The consents for the profile, as a

map with the consent identifier

as a key and the Consent object

type as a value.

13.10.2. EXAMPLE

In the example below, a profile for a visitor called “Bill Galileo” is detailed. A lot of user properties (such

as first name, last name, gender, job title and more) were copied over from the CMS upon initial login.

The profile is also part of 4 segments (leads, contacts, gender_male, age_60_70) and has a lot of different

scores as well. It is also part of a list (systemProperties.lists), and has granted two consents for receiving

newsletters. It has also been engaged in some goals (systemProperties.goals.*StartReached) and

completed some goals (systemProperties.goals.*TargetReached)

{

 "itemId": "f7d1f1b9-4415-4ff1-8fee-407b109364f7",

 "itemType": "profile",

 "properties": {

 "lastName": "Galileo",

 "preferredLanguage": "en",

Apache Unomi 2.x - Documentation - 117

 "nbOfVisits": 2,

 "gender": "male",

 "jobTitle": "Vice President",

 "lastVisit": "2020-01-31T08:41:22Z",

 "j:title": "mister",

 "j:about": "<p> Lorem Ipsum dolor sit amet,consectetur adipisicing elit, sed doeiusmod tempor

incididunt ut laboreet dolore magna aliqua. Ut enim adminim veniam, quis nostrudexercitation

ullamco laboris nisi utaliquip ex ea commodo consequat.Duis aute irure dolor inreprehenderit in

coluptate velit essecillum dolore eu fugiat nulla pariatur.Excepteur sint occaecat cupidatatnon

proident, sunt in culpa quiofficia deserunt mollit anim id estlaborum.</p> ",

 "firstName": "Bill",

 "pageViewCount": {

 "digitall": 19

 },

 "emailNotificationsDisabled": "true",

 "company": "Acme Space",

 "j:nodename": "bill",

 "j:publicProperties":

"j:about,j:firstName,j:function,j:gender,j:lastName,j:organization,j:picture,j:title",

 "firstVisit": "2020-01-30T21:18:12Z",

 "phoneNumber": "+1-123-555-12345",

 "countryName": "US",

 "city": "Las Vegas",

 "address": "Hotel Flamingo",

 "zipCode": "89109",

 "email": "bill@acme.com",

 "maritalStatus": "Married",

 "birthDate": "1959-08-12T23:00:00.000Z",

 "kids": 2,

 "age": 60,

 "income": 1000000,

 "facebookId": "billgalileo",

 "twitterId": "billgalileo",

 "linkedInId": "billgalileo",

 "leadAssignedTo": "Important Manager",

 "nationality": "American"

 },

 "systemProperties": {

 "mergeIdentifier": "bill",

 "lists": [

 "userListId"

],

 "goals": {

 "viewLanguagePageGoalTargetReached": "2020-02-10T19:30:31Z",

 "downloadGoalExampleTargetReached": "2020-02-10T15:22:41Z",

 "viewLandingPageGoalStartReached": "2020-02-10T19:30:27Z",

 "downloadGoalExampleStartReached": "2020-02-10T19:30:27Z",

 "optimizationTestGoalStartReached": "2020-02-10T19:30:27Z"

 }

 },

 "segments": [

 "leads",

 "age_60_70",

 "gender_male",

 "contacts"

],

 "scores": {

Apache Unomi 2.x - Documentation - 118

 "scoring_9": 10,

 "scoring_8": 0,

 "scoring_1": 10,

 "scoring_0": 10,

 "_s02s6220m": 0,

 "scoring_3": 10,

 "_27ir92oa2": 0,

 "scoring_2": 10,

 "scoring_5": 10,

 "scoring_4": 10,

 "scoring_7": 10,

 "scoring_6": 10,

 "_86igp9j1f": 1,

 "_ps8d573on": 0

 },

 "mergedWith": null,

 "consents": {

 "digitall/newsletter1": {

 "scope": "digitall",

 "typeIdentifier": "newsletter1",

 "status": "GRANTED",

 "statusDate": "2019-05-15T14:47:28Z",

 "revokeDate": "2021-05-14T14:47:28Z"

 },

 "digitall/newsletter2": {

 "scope": "digitall",

 "typeIdentifier": "newsletter2",

 "status": "GRANTED",

 "statusDate": "2019-05-15T14:47:28Z",

 "revokeDate": "2021-05-14T14:47:28Z"

 }

 }

}

13.11. PROFILE ALIASES

Profile aliases make it possible to reference profiles using multiple identifiers. The profile alias object

basically contains a link between the alias ID and the profile ID. The itemId of a profile alias is the actual

alias ID, which the profileID field contains the reference to the aliased profile.

13.11.1. STRUCTURE DEFINITION

Inherits all the fields from: Item

Field name Type Description

profileID String The identifier of the profile this

aliases points to

creationTime DateTime The date and time of creation of

the alias

Apache Unomi 2.x - Documentation - 119

Field name Type Description

modifiedTime DateTime The date and time of last

modification of the alias

13.11.2. EXAMPLE

In the following example we show an alias ID facebook_johndoe for the profile with ID f72242d2-3145-

43b1-8be7-d1d47cf4ad0e

 {

 "profileID": "f72242d2-3145-43b1-8be7-d1d47cf4ad0e",

 "itemId" : "facebook_johndoe",

 "creationTime" : "2022-09-16T19:23:51Z",

 "modifiedTime" : "2022-09-16T19:23:51Z"

 }

13.12. PERSONA

A persona is a specialized version of a Profile object. It basically represents a "typical" profile and can be

used notably to simulate personalized for a type of profiles. Usually personas are created from Profile

data and then edited to represent a specific marketing persona.

13.12.1. STRUCTURE DEFINITION

Inherits all the fields from: Profile

There are no fields specific to a Persona.

13.12.2. EXAMPLE

In the following example a Persona represents a visitor from Europe, that can be used to match by

location.

{

 "itemId": "europeanVisitor",

 "itemType": "persona",

 "properties": {

 "description": "Represents a visitor browsing from Europe",

 "firstName": "European",

 "lastName": "Visitor",

 "continent": "Europe"

 },

 "systemProperties": {},

 "segments": [],

 "scores": null,

 "consents": {}

}

Apache Unomi 2.x - Documentation - 120

13.13. CONSENT

A consent represents a single instance of a consent granted/refused or revoked by a profile. A profile

will contain multiple instances of consent identified by unique identifiers.

13.13.1. STRUCTURE DEFINITION

Inherits all the fields from: n/a

Field name Type Description

scope String The scope this consent is

associated with. In the case of a

website this might be the unique

identifier for the site.

typeIdentifier String This is a unique consent type

identifier, basically a unique

name for the consent. Example of

such types might include:

“newsletter”, “personalization”,

“tracking”.

status GRANTED / DENIED / REVOKED The type of status for this consent

statusDate Date The date (in ISO 8601 format) at

which the current status was set

revokeDate Date The date (in ISO 8106 format) at

which time the current status is

automatically revoked.

13.13.2. EXAMPLE

In this example, the consent called “newsletter” was given on the “digitall” website.

{

 "scope": "digitall",

 "typeIdentifier": "newsletter",

 "status": "GRANTED",

 "statusDate": "2019-05-15T14:47:28Z",

 "revokeDate": "2021-05-14T14:47:28Z"

}

13.14. SESSION

A session represents a period of time during which a visitor/profile has been active. It makes it possible

to gather data and then use it for reporting and further analysis by regrouping all the events that

occurred during the session.

Apache Unomi 2.x - Documentation - 121

13.14.1. STRUCTURE DEFINITION

Inherits all the fields from: Item

Field name Type Description

properties Map<String,Object> All the properties for the session.

These contain information such

as the browser, operating system

and device used, as well as

information about the location of

the visitor.

systemProperties Map<String,Object> Not used (empty)

profileId String The identifier of the profile that

generated the session

profile Profile A copy of the profile associated

with the session

size Integer The number of view event types

received during this session

duration Integer The duration of the session in

milliseconds

lastEventDate Date The date of the last event that

occurred in the session, in ISO

8601 format.

13.14.2. EXAMPLE

In this example the session contains a copy of the profile of the visitor. It is a visitor that has previously

authentified in a CMS and who’se information was copied at the time of login from the CMS user account

to the profile. You can also notice that the session contains the information coming from the browser’s

user agent which contains the browser type, version as well as the operating system used. The visitor’s

location is also resolve based on the IP address that was used to send events.

{

 "itemId": "4dcb5b74-6923-45ae-861a-6399ef88a209",

 "itemType": "session",

 "scope": "digitall",

 "profileId": "f7d1f1b9-4415-4ff1-8fee-407b109364f7",

 "profile": {

 "itemId": "f7d1f1b9-4415-4ff1-8fee-407b109364f7",

 "itemType": "profile",

 "properties": {

 "preferredLanguage": "en",

 "nbOfVisits": 2,

 "gender": "male",

 "jobTitle": "Vice President",

 "lastVisit": "2020-01-31T08:41:22Z",

 "j:title": "mister",

Apache Unomi 2.x - Documentation - 122

https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/ISO_8601

 "j:about": "<p> Lorem Ipsum dolor sit amet,consectetur adipisicing elit, sed doeiusmod tempor

incididunt ut laboreet dolore magna aliqua. Ut enim adminim veniam, quis nostrudexercitation

ullamco laboris nisi utaliquip ex ea commodo consequat.Duis aute irure dolor inreprehenderit in

coluptate velit essecillum dolore eu fugiat nulla pariatur.Excepteur sint occaecat cupidatatnon

proident, sunt in culpa quiofficia deserunt mollit anim id estlaborum.</p> ",

 "pageViewCount": {

 "digitall": 19

 },

 "emailNotificationsDisabled": "true",

 "company": "Acme Space",

 "j:publicProperties":

"j:about,j:firstName,j:function,j:gender,j:lastName,j:organization,j:picture,j:title",

 "firstVisit": "2020-01-30T21:18:12Z",

 "countryName": "US",

 "city": "Las Vegas",

 "zipCode": "89109",

 "maritalStatus": "Married",

 "birthDate": "1959-08-12T23:00:00.000Z",

 "kids": 25,

 "age": 60,

 "income": 1000000,

 "leadAssignedTo": "Important Manager"

 },

 "systemProperties": {

 "mergeIdentifier": "bill",

 "lists": [

 "_xb2bcm4wl"

]

 },

 "segments": [

 "leads",

 "age_60_70",

 "gender_male",

 "contacts"

],

 "scores": {

 "scoring_9": 10,

 "scoring_8": 0,

 "scoring_1": 10,

 "scoring_0": 10,

 "_s02s6220m": 0,

 "scoring_3": 10,

 "_27ir92oa2": 0,

 "scoring_2": 10,

 "scoring_5": 10,

 "scoring_4": 10,

 "scoring_7": 10,

 "scoring_6": 10,

 "_86igp9j1f": 1,

 "_ps8d573on": 0

 },

 "mergedWith": null,

 "consents": {}

 },

 "properties": {

 "sessionCity": "Geneva",

 "operatingSystemFamily": "Desktop",

Apache Unomi 2.x - Documentation - 123

 "userAgentNameAndVersion": "Firefox@@72.0",

 "countryAndCity": "Switzerland@@Geneva@@2660645@@6458783",

 "userAgent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:72.0) Gecko/20100101

Firefox/72.0",

 "userAgentName": "Firefox",

 "sessionCountryCode": "CH",

 "deviceName": null,

 "sessionCountryName": "Switzerland",

 "referringURL": "null",

 "deviceCategory": "Apple Macintosh",

 "pageReferringURL": "http://localhost:8080/sites/digitall/home/corporate-responsibility.html",

 "userAgentVersion": "72.0",

 "sessionAdminSubDiv2": 6458783,

 "sessionAdminSubDiv1": 2660645,

 "location": {

 "lon": 6.1282508,

 "lat": 46.1884341

 },

 "sessionIsp": "Cablecom",

 "operatingSystemName": "Mac OS X",

 "deviceBrand": "Apple"

 },

 "systemProperties": {},

 "timeStamp": "2020-01-31T08:41:22Z",

 "lastEventDate": "2020-01-31T08:53:32Z",

 "size": 19,

 "duration": 730317

}

13.15. SEGMENT

Segments are used to group profiles together, and are based on conditions that are executed on profiles

to determine if they are part of a segment or not.

This also means that a profile may enter or leave a segment based on changes in their properties,

making segments a highly dynamic concept.

13.15.1. STRUCTURE DEFINITION

Inherits all the fields from: MetadataItem

Field name Type Description

condition Condition The root condition for the

segment. Conditions may be

composed by using built-in

condition types such as

booleanCondition that can accept

sub-conditions.

Apache Unomi 2.x - Documentation - 124

13.15.2. EXAMPLE

{

 "itemId": "age_20_30",

 "itemType": "segment",

 "condition": {

 "parameterValues": {

 "subConditions": [

 {

 "parameterValues": {

 "propertyName": "properties.age",

 "comparisonOperator": "greaterThanOrEqualTo",

 "propertyValueInteger": 20

 },

 "type": "profilePropertyCondition"

 },

 {

 "parameterValues": {

 "propertyName": "properties.age",

 "comparisonOperator": "lessThan",

 "propertyValueInteger": 30

 },

 "type": "profilePropertyCondition"

 }

],

 "operator": "and"

 },

 "type": "booleanCondition"

 },

 "metadata": {

 "id": "age_20_30",

 "name": "age_20_30",

 "description": null,

 "scope": "digitall",

 "tags": [],

 "enabled": true,

 "missingPlugins": false,

 "hidden": false,

 "readOnly": false

 }

}

Here is an example of a simple segment definition registered using the REST API:

Apache Unomi 2.x - Documentation - 125

curl -X POST http://localhost:8181/cxs/segments \

--user karaf:karaf \

-H "Content-Type: application/json" \

-d @- <<'EOF'

{

 "metadata": {

 "id": "leads",

 "name": "Leads",

 "scope": "systemscope",

 "description": "You can customize the list below by editing the leads segment.",

 "readOnly":true

 },

 "condition": {

 "type": "booleanCondition",

 "parameterValues": {

 "operator" : "and",

 "subConditions": [

 {

 "type": "profilePropertyCondition",

 "parameterValues": {

 "propertyName": "properties.leadAssignedTo",

 "comparisonOperator": "exists"

 }

 }

]

 }

 }

}

EOF

For more details on the conditions and how they are structured using conditions, see the next section.

13.16. CONDITION

Conditions are a very useful notion inside of Apache Unomi, as they are used as the basis for multiple

other objects. Conditions may be used as parts of:

• Segments

• Rules

• Queries

• Campaigns

• Goals

• Profile filters (using to search for profiles)

The result of a condition is always a boolean value of true or false.

Apache Unomi provides quite a lot of built-in condition types, including boolean types that make it

possible to compose conditions using operators such as and, or or not. Composition is an essential

element of building more complex conditions.

Apache Unomi 2.x - Documentation - 126

For a more complete list of available condition types, see the Built-in condition types reference section.

13.16.1. STRUCTURE DEFINITION

Inherits all the fields from: n/a

Field name Type Description

conditionTypeId String A condition type identifier is a

string that contains a unique

identifier for a condition type.

Example condition types may

include booleanCondition,

eventTypeCondition,

eventPropertyCondition, and so

on. Plugins may implement new

condition types that may

implement any logic that may be

needed.

parameterValues Map<String,Object> The parameter values are simply

key-value paris that may be used

to configure the condition. In the

case of a booleanCondition for

example one of the parameter

values will be an operator that

will contain values such as and or

or and a second parameter value

called subConditions that

contains a list of conditions to

evaluate with that operator.

13.16.2. EXAMPLE

Here is an example of a complex condition:

Apache Unomi 2.x - Documentation - 127

{

 "condition": {

 "type": "booleanCondition",

 "parameterValues": {

 "operator":"or",

 "subConditions":[

 {

 "type": "eventTypeCondition",

 "parameterValues": {

 "eventTypeId": "sessionCreated"

 }

 },

 {

 "type": "eventTypeCondition",

 "parameterValues": {

 "eventTypeId": "sessionReassigned"

 }

 }

]

 }

 }

}

As we can see in the above example we use the boolean or condition to check if the event type is of type

sessionCreated or sessionReassigned.

13.17. RULE

Apache Unomi 2.x - Documentation - 128

Apache Unomi has a built-in rule engine that is one of the most important components of its

architecture. Every time an event is received by the server, it is evaluated against all the rules and the

ones matching the incoming event will be executed. You can think of a rule as a structure that looks like

this:

when

 conditions

then

 actions

Basically when a rule is evaluated, all the conditions in the when part are evaluated and if the result

matches (meaning it evaluates to true) then the actions will be executed in sequence.

The real power of Apache Unomi comes from the fact that conditions and actions are fully pluggeable

and that plugins may implement new conditions and/or actions to perform any task. You can imagine

conditions checking incoming event data against third-party systems or even against authentication

systesm, and actions actually pulling or pushing data to third-party systems.

For example the Salesforce CRM connector is simply a set of actions that pull and push data into the

CRM. It is then just a matter of setting up the proper rules with the proper conditions to determine when

and how the data will be pulled or pushed into the third-party system.

Apache Unomi 2.x - Documentation - 129

13.17.1. STRUCTURE DEFINITION

Inherits all the fields from: MetadataItem

Field name Type Description

condition Condition The root condition for the rule.

Conditions may be composed by

using built-in condition types

such as booleanCondition that

can accept sub-conditions.

action Action array A list of Action object that will be

executed if the condition is true.

linkedItems String array A list of references to objects that

may have generated this rule.

Goals and segments dynamically

generate rules to react to

incoming events. It is not

recommend to manipulate rules

that have linkedItems as it may

break functionality.

raiseEventOnlyOnce Boolean If true, the rule will only be

executed once for a given event.

raiseEventOnlyOnceForProfile Boolean If true, the rule will only be

executed once for a given profile

and a matching event. Warning:

this functionality has a

performance impact since it

looks up past events.

raiseEventOnlyOnceForSession Boolean If true, the rule will only be

executed once for a given session

and a matching event. Warning:

this functionality has a

performance impact since it

looks up past events.

priority Integer The priority for the rule. The

lower the priority value the

higher the effective priority (they

are sorted by ascending order of

priority)

13.17.2. EXAMPLE

In this example we can see the default updateProperties built-in rule that matches the updateProperties

event and executes the built-in updatePropertiesAction

Apache Unomi 2.x - Documentation - 130

{

 "itemId": "updateProperties",

 "itemType": "rule",

 "condition": {

 "parameterValues": {},

 "type": "updatePropertiesEventCondition"

 },

 "actions": [

 {

 "parameterValues": {},

 "type": "updatePropertiesAction"

 }

],

 "linkedItems": null,

 "raiseEventOnlyOnceForProfile": false,

 "raiseEventOnlyOnceForSession": false,

 "priority": 0,

 "metadata": {

 "id": "updateProperties",

 "name": "Update profile/persona properties",

 "description": "Update profile/persona properties",

 "scope": "systemscope",

 "tags": [],

 "systemTags": [],

 "enabled": true,

 "missingPlugins": false,

 "hidden": false,

 "readOnly": true

 }

}

13.18. ACTION

Actions are executed by rules in a sequence, and an action is only executed once the previous action has

finished executing. If an action generates an exception, it will be logged and the execution sequence will

continue unless in the case of a Runtime exception (such as a NullPointerException).

Action use Action types that are implemented as Java classes, and as such may perform any kind of tasks

that may include calling web hooks, setting profile properties, extracting data from the incoming request

(such as resolving location from an IP address), or even pulling and/or pushing data to third-party

systems such as a CRM server.

Apache Unomi also comes with built-in action types. You may find the list of built-in action types in the

Built-in action types section.

13.18.1. STRUCTURE DEFINITION

Inherits all the fields from: n/a

Apache Unomi 2.x - Documentation - 131

Field name Type Description

actionTypeId String An action type identifier is a

string that contains a unique

identifier for a action type.

parameterValues Map<String,Object> The parameter values are simply

key-value paris that may be used

to configure the action.

13.18.2. EXAMPLE

In this example of an action, taking from the form-mapping-example.json rule, the setPropertyAction

action is used to set the properties.firstName profile property to a value read from the event properties

called properties.firstName. The setPropertyStrategy is a parameter specific to this action that allows to

define if existing values should be overridden or not.

 {

 "type": "setPropertyAction",

 "parameterValues": {

 "setPropertyName": "properties(firstName)",

 "setPropertyValue": "eventProperty::properties(firstName)",

 "setPropertyStrategy": "alwaysSet"

 }

 }

13.19. LIST

Lists are a “manual” way to organize profiles, whereas Segments are a dynamic way to regroup them.

List objects actually only define the list in terms of name, description and other metadata but the list of

members is actually not represented in the object. The profiles contain references to the lists in their

“systemProperties.lists” property. This property is an array of list identifiers so in order to retrieve all

the list names for a given profile, a lookup of List objects is required using the identifiers.

13.19.1. STRUCTURE DEFINITION

Inherits all the fields from: MetadataItem

Field name Description

No additional fields are present in this object type

13.19.2. EXAMPLE

Here’s an example of a list called “First list”, along with its description, its scope, tags, etc.. . As a List

object is basically a MetadataItem sub-class it simply has all the fields defined in that parent class. Note

that the List does not contain Profiles, it is Profiles that reference the Lists, not the reverse.

Apache Unomi 2.x - Documentation - 132

{

 "itemId": "userListId",

 "itemType": "userList",

 "metadata": {

 "id": "userListId",

 "name": "First list",

 "description": "Description of the first list.",

 "scope": "digitall",

 "tags": [],

 "systemTags": [],

 "enabled": true,

 "missingPlugins": false,

 "hidden": false,

 "readOnly": false

 }

}

13.20. GOAL

A goal can be defined with two conditions: a start event condition and an target event condition.

Basically the goal will be “active” when its start event condition is satisfied, and “reached” when the

target event condition is true. Goals may also (optionally) be associated with Campaigns. Once a goal is

“reached”, a “goal” event triggered and the profile that is currently interacting with the system will see

its system properties updated to indicate which goal has been reached.

13.20.1. STRUCTURE DEFINITION

Inherits all the fields from: MetadataItem

Field name Type Description

startEvent Condition The condition that will be used to

determine if this goal was

activated by the current profile

targetEvent Condition The condition that will be used to

determine if the current profile

has reached the goal.

campaignId String If this goal was setup as part of a

Campaign, the unique identifier

for the campaign is stored in this

field.

13.20.2. EXAMPLE

In the following example, a goal called “downloadGoalExample” is started when a new session is created

(we use the “sessionCreatedEventCondition” for that) and is reached when a profile downloads a file

called “ACME_WP.pdf” (that’s what the “downloadEventCondition” means).

Apache Unomi 2.x - Documentation - 133

{

 "itemId": "downloadGoalExample",

 "itemType": "goal",

 "startEvent": {

 "parameterValues": {},

 "type": "sessionCreatedEventCondition"

 },

 "targetEvent": {

 "parameterValues": {

 "filePath": "/sites/digitall/files/PDF/Publications/ACME_WP.pdf"

 },

 "type": "downloadEventCondition"

 },

 "campaignId": "firstCampaignExample",

 "metadata": {

 "id": "downloadGoalExample",

 "name": "downloadGoalExample",

 "description": null,

 "scope": "digitall",

 "enabled": true,

 "missingPlugins": false,

 "hidden": false,

 "readOnly": false,

 "systemTags": [

 "goal",

 "downloadGoal"

]

 }

}

13.21. CAMPAIGN

A Campaign object represents a digital marketing campaign, along with conditions to enter the

campaign and a specific duration, target and costs.

13.21.1. STRUCTURE DEFINITION

Inherits all the fields from: MetadataItem

Field name Type Description

startDate Date The start date of the Campaign

(in ISO 8601 format)

endDate Date The end date of the Campaign (in

ISO 8601 format)

entryCondition Condition The condition that must be

satisfied for a profile to become a

participant in the campaign

cost Double An indicative cost for the

campaign

Apache Unomi 2.x - Documentation - 134

Field name Type Description

currency String The currency code (3-letter) for

the cost of the campaign

primaryGoal String A unique identifier of the

primary Goal for the campaign.

timezone String The timezone of the campaign

identified by the TZ database

name (see

https://en.wikipedia.org/wiki/

List_of_tz_database_time_zones)

13.21.2. EXAMPLE

In the following example a campaign that starts January 1st 31, 2020 at 8:38am and finished on February

29th, 2020 at the same time has the following entry condition: the session duration must be less or equal

to 3000 milliseconds (3 seconds) and the profile has viewed the “about” page on the “digitall” website.

The cost of the campaign is USD 1’000’000 and the timezone is Europe/Zurich. The primary goal for the

campaign is the goal we should have as an example in the Goal section.

Apache Unomi 2.x - Documentation - 135

https://en.wikipedia.org/wiki/List_of_tz_database_time_zones
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones

{

 "itemId": "firstCampaignExample",

 "itemType": "campaign",

 "startDate": "2020-01-31T08:38:00Z",

 "endDate": "2020-02-29T08:38:00Z",

 "entryCondition": {

 "parameterValues": {

 "subConditions": [

 {

 "parameterValues": {

 "propertyName": "duration",

 "comparisonOperator": "lessThanOrEqualTo",

 "propertyValueInteger": 3000

 },

 "type": "sessionPropertyCondition"

 },

 {

 "parameterValues": {

 "pagePath": "/sites/digitall/home/about"

 },

 "type": "pageViewEventCondition"

 }

],

 "operator": "and"

 },

 "type": "booleanCondition"

 },

 "cost": 1000000,

 "currency": "USD",

 "primaryGoal": "downloadGoalExample",

 "timezone": "Europe/Zurich",

 "metadata": {

 "id": "firstCampaignExample",

 "name": "firstCampaign",

 "description": "Example of a campaign",

 "scope": "digitall",

 "tags": [],

 "systemTags": [

 "landing",

 "campaign"

],

 "enabled": true,

 "missingPlugins": false,

 "hidden": false,

 "readOnly": false

 }

}

13.22. SCORING PLAN

Scoring plans make it possible to define scores that will be tracked for profiles and use conditions to

increment a score when the conditions are met. This makes it possible to then use threshold conditions

on profiles when they reach a certain score.

Apache Unomi 2.x - Documentation - 136

13.22.1. STRUCTURE DEFINITION

Inherits all the fields from: MetadataItem

Field name Type Description

elements ScoringElement array A ScoringElement is composed of:

a Condition and a score value to

increment. Each element defines

a separate condition (tree) that

will increment the defined score

for this scoring plan, making it

possible to have completely

different conditions to augment a

score.

13.22.2. EXAMPLE

In this example a scoring plan contains a single element that will increment a score with an increment

one 1 once the profile has viewed at least 3 pages (using the “hasSeenNPagesCondition” condition).

{

 "itemId": "viewMoreThan3PagesId",

 "itemType": "scoring",

 "elements": [

 {

 "condition": {

 "parameterValues": {

 "value": 3,

 "scope": "digitall",

 "comparisonOperator": "greaterThanOrEqualTo"

 },

 "type": "hasSeenNPagesCondition"

 },

 "value": 1

 }

],

 "metadata": {

 "id": "viewMoreThan3PagesId",

 "name": "Viewed more than 3 pages",

 "description": null,

 "scope": "digitall",

 "tags": [],

 "systemTags": [

 "st:behavioral"

],

 "enabled": true,

 "missingPlugins": false,

 "hidden": false,

 "readOnly": false

 }

}

Apache Unomi 2.x - Documentation - 137

13.23. BUILT-IN EVENT TYPES

Apache Unomi comes with built-in event types, which we describe below.

13.23.1. LOGIN EVENT TYPE

The login event type is used to signal an authentication event has been triggered. This event should be

“secured”, meaning that it should not be accepted from any location, and by default Apache Unomi will

only accept this event from configured “third-party” servers (identified by their IP address and a Unomi

application key).

Usually, the login event will contain information passed by the authentication server and may include

user properties and any additional information. Rules may be set up to copy the information from the

event into the profile, but this is not done in the default set of rules provided by Apache Unomi for

security reasons. You can find an example of such a rule here:

https://github.com/apache/unomi/blob/master/samples/login-integration/src/main/resources/META-

INF/cxs/rules/exampleLogin.json

STRUCTURE OVERVIEW

Based on the structure of the following object: Event

Field name Value/description

eventType login

source Not used (null)

target an Item representing the user that logged in

scope the scope in which the user has authenticated

properties Not used (empty)

EXAMPLE

In this case, a user has logged into a site called “digitall”, and his user information the following

properties are associated with the active user..and perhaps show his visitor profile or user information.

Apache Unomi 2.x - Documentation - 138

https://github.com/apache/unomi/blob/master/samples/login-integration/src/main/resources/META-INF/cxs/rules/exampleLogin.json
https://github.com/apache/unomi/blob/master/samples/login-integration/src/main/resources/META-INF/cxs/rules/exampleLogin.json

{

 "itemId": "0b8825a6-efb8-41a6-bea5-d745b33c94cb",

 "itemType": "event",

 "scope": "digitall",

 "eventType": "login",

 "sessionId": "7b8a5f17-cdb0-4c14-b676-34c1c0de0825",

 "profileId": "f7d1f1b9-4415-4ff1-8fee-407b109364f7",

 "timeStamp": "2020-01-30T21:18:28Z",

 "properties": {},

 "source": null,

 "target": {

 "itemId": "13054a95-092d-4d7b-81f5-e4656c2ebc88",

 "itemType": "cmsUser",

 "scope": null,

 "properties": {

 "j:function": "Vice President",

 "preferredLanguage": "en",

 "j:title": "mister",

 "emailNotificationsDisabled": "true",

 "j:organization": "Acme Space",

 "j:gender": "male",

 "j:nodename": "bill",

 "j:lastName": "Galileo",

 "j:publicProperties":

"j:about,j:firstName,j:function,j:gender,j:lastName,j:organization,j:picture,j:title",

 "j:firstName": "Bill",

 "j:about": "<p> Lorem Ipsum dolor sit amet.</p> "

 }

 }

}

Apache Unomi 2.x - Documentation - 139

13.23.2. VIEW EVENT TYPE

This event is triggered when a web page is viewed by a user. Some integrators might also want to trigger

it when a single-page-application screen is displayed or when a mobile application screen is displayed.

STRUCTURE DESCRIPTION

Based on the structure of the following object: Event

Field name Value/description

eventType view

source the source for the view event, could be a web site,

an application name, etc…

target the page/screen being viewed

properties Not used (empty)

EXAMPLE

In this case a use has visited the home page of the digitall site. As this is the first page upon login, the

destination and referring URL are the same.

Apache Unomi 2.x - Documentation - 140

{

 "itemId": "c75f50c2-ab55-4d95-be69-cbbeee180d6b",

 "itemType": "event",

 "scope": "digitall",

 "eventType": "view",

 "sessionId": "7b8a5f17-cdb0-4c14-b676-34c1c0de0825",

 "profileId": "f7d1f1b9-4415-4ff1-8fee-407b109364f7",

 "timeStamp": "2020-01-30T21:18:32Z",

 "properties": {},

 "source": {

 "itemId": "29f5fe37-28c0-48f3-966b-5353bed87308",

 "itemType": "site",

 "scope": "digitall",

 "properties": {}

 },

 "target": {

 "itemId": "f20836ab-608f-4551-a930-9796ec991340",

 "itemType": "page",

 "scope": "digitall",

 "properties": {

 "pageInfo": {

 "templateName": "home",

 "language": "en",

 "destinationURL": "http://localhost:8080/sites/digitall/home.html",

 "categories": [],

 "pageID": "f20836ab-608f-4551-a930-9796ec991340",

 "nodeType": "jnt:page",

 "pagePath": "/sites/digitall/home",

 "pageName": "Home",

 "referringURL": "http://localhost:8080/sites/digitall/home.html",

 "tags": [],

 "isContentTemplate": false

 },

 "attributes": {},

 "consentTypes": []

 }

 }

}

13.23.3. FORM EVENT TYPE

This event type is used to track form submissions. These could range from login to survey form data

captured and processed in Apache Unomi using rules.

STRUCTURE DESCRIPTION

Based on the structure of the following object: Event

Field name Value/description

eventType form

source the page/screen on which the form was submitted

Apache Unomi 2.x - Documentation - 141

Field name Value/description

target the form that was submitted (there could be more

than one form on a page/screen)

properties contain the data submitted in the form

EXAMPLE

A form exists on the digitall site, and has been submitted by a visitor. In this case it was a search form

that contains fields to adjust the search parameters.

Apache Unomi 2.x - Documentation - 142

{

 "itemId": "44177ffe-b5c8-4575-a8e5-f8aa0d4ee792",

 "itemType": "event",

 "scope": "digitall",

 "eventType": "form",

 "sessionId": "be416c08-8b9b-4611-990f-3a8bf3ed4e68",

 "profileId": "bc1e1238-a9ac-4b3a-8f63-5eec205cfcd5",

 "timeStamp": "2020-01-30T21:41:22Z",

 "properties": {

 "jcrMethodToCall": "get",

 "src_originSiteKey": "digitall",

 "src_terms[0].term": "test",

 "src_terms[0].applyFilter": "true",

 "src_terms[0].match": "all_words",

 "src_terms[0].fields.siteContent": "true",

 "src_terms[0].fields.tags": "true",

 "src_terms[0].fields.files": "true",

 "src_sites.values": "digitall",

 "src_sitesForReferences.values": "systemsite",

 "src_languages.values": "en"

 },

 "source": {

 "itemId": "97e14221-33dd-4608-82ae-9724d15d4f12",

 "itemType": "page",

 "scope": "digitall",

 "properties": {

 "pageInfo": {

 "templateName": "home",

 "language": "en",

 "destinationURL": "http://localhost:8080/sites/digitall/home/search-results.html",

 "categories": [],

 "pageID": "97e14221-33dd-4608-82ae-9724d15d4f12",

 "nodeType": "jnt:page",

 "pagePath": "/sites/digitall/home/search-results",

 "pageName": "Search Results",

 "referringURL": "http://localhost:8080/cms/edit/default/en/sites/digitall/home.html",

 "tags": [],

 "isContentTemplate": false

 },

 "attributes": {},

 "consentTypes": []

 }

 },

 "target": {

 "itemId": "searchForm",

 "itemType": "form",

 "scope": "digitall",

 "properties": {}

 }

}

13.23.4. UPDATE PROPERTIES EVENT TYPE

This event is usually used by user interfaces that make it possible to modify profile properties, for

example a form where a user can edit his profile properties, or a management UI to modify.

Apache Unomi 2.x - Documentation - 143

Note that this event type is a protected event type that is only accepted from configured third-party

servers.

STRUCTURE DEFINITION

Based on the structure of the following object: Event

Field name Value/description

eventType updateProperties

source the screen that has triggered the update to the

profile properties

target Not used (null)

properties { targetId: the identifier of the profile to update

targetType: “profile” if updating a profile or

“persona” for personas add/update/delete:

properties to be added/updated or deleted on the

target profile}

EXAMPLE

In this example, this “updateProperties” event contains properties that must be added to the targetId

profile.

Apache Unomi 2.x - Documentation - 144

{

 "itemId": "d8fec330-33cb-42bc-a4e2-bb48ea7ed29b",

 "itemType": "event",

 "scope": null,

 "eventType": "updateProperties",

 "sessionId": "66e63ec9-66bc-4fac-8a8a-febcc3d6cbb7",

 "profileId": "bc1e1238-a9ac-4b3a-8f63-5eec205cfcd5",

 "timeStamp": "2020-01-31T08:51:15Z",

 "properties": {

 "targetId": "f7d1f1b9-4415-4ff1-8fee-407b109364f7",

 "targetType": "profile",

 "add": {

 "properties.phoneNumber": "+1-123-555-12345",

 "properties.countryName": "US",

 "properties.city": "Las Vegas",

 "properties.address": "Hotel Flamingo",

 "properties.zipCode": "89109",

 "properties.email": "bill@acme.com"

 }

 },

 "source": {

 "itemId": "wemProfile",

 "itemType": "wemProfile",

 "scope": "digitall",

 "properties": {}

 },

 "target": null

}

13.23.5. IDENTIFY EVENT TYPE

This event type is used to add information learned about the current profile. This could be through a

form that has asked the user to provide some information about himself, or it could be information sent

by another system (CRM, SSO, DMP, LiveRamp or equivalent) to augment the data for the current profile.

It should be noted that, as in the case of a login event, it might be a good idea to be careful as to who and

what system are allowed to send this event. Also, in order for this event to perform any modifications,

an associated rule will be needed in the Unomi system to perform modifications to a profile (there is no

default rule).

Event type Available publicly Default rule Targeted at back-

office

Can

remove/update

properties

identify yes no no no

updateProperties no yes yes yes

The rule of thumb is: if you need to send profile data from public system to add information to a profile

you should use the identify event type and add a rule to only process the data you want to accept. If you

want to add/update/delete properties in a secure manner from a known server you could use the

updateProperties but you should always check first if you can’t use the identify or event form event

Apache Unomi 2.x - Documentation - 145

types with specific rules as this reduces greatly the potential for misuse.

STRUCTURE DESCRIPTION

Based on the structure of the following object: Event

Field name Value/description

eventType identify

source the site/application name that triggered the

identify event

target the user information contained in the event

properties Not used (empty)

EXAMPLE

In this example, an event containing additional information about the user (his nickname, favorite

compiler and industry) was sent to Apache Unomi.

Apache Unomi 2.x - Documentation - 146

{

 "itemId": "18dfd6c7-9055-4ef0-a2eb-14c1482b4544",

 "itemType": "event",

 "scope": "myScope",

 "eventType": "identify",

 "sessionId": "928d9237-fb3d-4e53-cbee-1aeb1df7f03a",

 "profileId": "temp_023ded50-bb43-4fe2-acbc-13bfa8de16de",

 "timeStamp": "2020-01-15T14:13:25Z",

 "properties": {},

 "source": {

 "itemId": "myScope",

 "itemType": "site",

 "scope": "myScope",

 "properties": {

 "page": {

 "path": "/web-page/",

 "referrer": "http://localhost:8181/",

 "search": "",

 "title": "Apache Unomi Web Test Page",

 "url": "http://localhost:8181/web-page/"

 }

 }

 },

 "target": {

 "itemId": "null",

 "itemType": "analyticsUser",

 "scope": "myScope",

 "properties": {

 "nickname": "Amazing Grace",

 "favoriteCompiler": "A-0",

 "industry": "Computer Science"

 }

 }

}

13.23.6. SESSION CREATED EVENT TYPE

The session created event is an internal event created by Apache Unomi when a new session is created.

This indicates that a new visitor has interacted with a system that is using Apache Unomi to track their

behavior.

STRUCTURE DEFINITION

Based on the structure of the following object: Event

Field name Value/description

eventType sessionCreated

source Not used (null)

target the Session item that was created with all its fields

and properties

Apache Unomi 2.x - Documentation - 147

Field name Value/description

properties Not used (empty)

EXAMPLE

In this example, a new session was created for a visitor coming to the digitall website. The session

contains the firstVisit property. It may be augmented over time with more information including

location.

{

 "itemId": "b3f5486f-b317-4182-9bf4-f497271e5363",

 "itemType": "event",

 "scope": "digitall",

 "eventType": "sessionCreated",

 "sessionId": "be416c08-8b9b-4611-990f-3a8bf3ed4e68",

 "profileId": "bc1e1238-a9ac-4b3a-8f63-5eec205cfcd5",

 "timeStamp": "2020-01-30T21:13:26Z",

 "properties": {},

 "source": null,

 "target": {

 "itemId": "be416c08-8b9b-4611-990f-3a8bf3ed4e68",

 "itemType": "session",

 "scope": "digitall",

 "profileId": "bc1e1238-a9ac-4b3a-8f63-5eec205cfcd5",

 "profile": {

 "itemId": "bc1e1238-a9ac-4b3a-8f63-5eec205cfcd5",

 "itemType": "profile",

 "properties": {

 "firstVisit": "2020-01-30T21:13:26Z"

 },

 "systemProperties": {},

 "segments": [],

 "scores": null,

 "mergedWith": null,

 "consents": {}

 },

 "properties": {},

 "systemProperties": {},

 "timeStamp": "2020-01-30T21:13:26Z",

 "lastEventDate": null,

 "size": 0,

 "duration": 0

 }

}

13.23.7. GOAL EVENT TYPE

A goal event is triggered when the current profile (visitor) reaches a goal.

Apache Unomi 2.x - Documentation - 148

STRUCTURE DEFINITION

Based on the structure of the following object: Event

Field name Value/description

eventType goal

source the Event that triggered the goal completion

target the Goal item that was reached

properties Not used (empty)

EXAMPLE

In this example, a visitor has reached a goal by viewing a page called “sub-home” on the site “digitall”

(event source). This goal event had the goal object as a target. The goal object (see Goal object later in

this document) has a start event of creating a new session and a target event of a page view on the page

“sub-home”.

{

 "itemId": "9fa70519-382d-412b-82ea-99b5989fbd0d",

 "itemType": "event",

 "scope": "digitall",

 "eventType": "goal",

 "sessionId": "42bd3fde-5fe9-4df6-8ae6-8550b8b06a7f",

 "profileId": "3ec46b2c-fbaa-42d5-99df-54199c807fc8",

 "timeStamp": "2017-05-29T23:49:16Z",

 "properties": {},

 "source": {

 "itemId": "aadcd86c-9431-43c2-bdc3-06683ac25927",

 "itemType": "event",

 "scope": "digitall",

 "eventType": "view",

 "sessionId": "42bd3fde-5fe9-4df6-8ae6-8550b8b06a7f",

 "profileId": "3ec46b2c-fbaa-42d5-99df-54199c807fc8",

 "timeStamp": "2017-05-29T23:49:16Z",

 "properties": {},

 "source": {

 "itemId": "6d5f4ae3-30c9-4561-81f3-06f82af7da1e",

 "itemType": "site",

 "scope": "digitall",

 "properties": {}

 },

 "target": {

 "itemId": "67dfc299-9b74-4264-a865-aebdc3482539",

 "itemType": "page",

 "scope": "digitall",

 "properties": {

 "pageInfo": {

 "language": "en",

 "destinationURL": "https://acme.com/home/sub-home.html",

 "pageID": "67dfc299-9b74-4264-a865-aebdc3482539",

 "pagePath": "/sites/digitall/home/sub-home",

Apache Unomi 2.x - Documentation - 149

 "pageName": "sub-home",

 "referringURL": "https://acme.com/home/perso-on-profile-past-event-page.html"

 },

 "category": {},

 "attributes": {}

 }

 }

 },

 "target": {

 "itemId": "_v4ref2mxg",

 "itemType": "goal",

 "startEvent": {

 "parameterValues": {},

 "type": "sessionCreatedEventCondition"

 },

 "targetEvent": {

 "parameterValues": {

 "pagePath": "/sites/digitall/home/sub-home"

 },

 "type": "pageViewEventCondition"

 },

 "campaignId": null,

 "metadata": {

 "id": "_v4ref2mxg",

 "name": "sub-home-visit",

 "description": "",

 "scope": "digitall",

 "tags": [

 "pageVisitGoal"

],

 "enabled": true,

 "missingPlugins": false,

 "hidden": false,

 "readOnly": false

 }

 }

}

13.23.8. MODIFY CONSENT EVENT TYPE

Consent type modification events are used to tell Unomi that consents were modified. A built-in rule will

update the current profile with the consent modifications contained in the event. Consent events may be

sent directly by a current profile to update their consents on the profile.

STRUCTURE DEFINITION

Based on the structure of the following object: Event

Field name Value/description

eventType modifyConsent

Apache Unomi 2.x - Documentation - 150

Field name Value/description

source the page that has triggered the update the consents

and that contains the different consent types the

current profile could grant or deny

target The consent that was modified

properties The consent’s new value. See the Consent object

type for more information.

EXAMPLE

In this example, a user-generated a consent modification when visiting the home page, possibly by

interacting with a consent form that captured his preferences. Different consent types were present on

the page and he decided to GRANT the “tracking” consent.

{

Apache Unomi 2.x - Documentation - 151

 "scope": "digitall",

 "eventType": "modifyConsent",

 "source": {

 "itemType": "page",

 "scope": "digitall",

 "itemId": "f20836ab-608f-4551-a930-9796ec991340",

 "properties": {

 "pageInfo": {

 "pageID": "f20836ab-608f-4551-a930-9796ec991340",

 "nodeType": "jnt:page",

 "pageName": "Home",

 "pagePath": "/sites/digitall/home",

 "templateName": "home",

 "destinationURL": "http://localhost:8080/sites/digitall/home.html",

 "referringURL": "http://localhost:8080/cms/render/default/en/sites/digitall/home.html",

 "language": "en",

 "categories": [],

 "tags": [],

 "isContentTemplate": false

 },

 "attributes": {},

 "consentTypes": [

 {

 "typeIdentifier": "tracking",

 "activated": true,

 "title": "Allow tracking",

 "description": "If approved we are allowed to track the visitor"

 },

 {

 "typeIdentifier": "newsletter1",

 "activated": true,

 "title": "Newsletter 1",

 "description": "desc"

 },

 {

 "typeIdentifier": "newsletter2",

 "activated": true,

 "title": "Newsletter 2",

 "description": "desc"

 },

 {

 "typeIdentifier": "newsletter",

 "activated": true,

 "title": "Receive newsletter",

 "description": "If approved we will send newsletter."

 }

]

 }

 },

 "target": {

 "itemType": "consent",

 "scope": "digitall",

 "itemId": "tracking"

 },

 "properties": {

 "consent": {

 "scope": "digitall",

Apache Unomi 2.x - Documentation - 152

 "typeIdentifier": "tracking",

 "status": "GRANTED",

 "statusDate": "2020-01-31T20:10:00.463Z",

 "revokeDate": "2022-01-30T20:10:00.463Z"

 }

 }

}

13.24. BUILT-IN CONDITION TYPES

Apache Unomi comes with an extensive collection of built-in condition types. Instead of detailing them

one by one you will find here an overview of what a JSON condition descriptor looks like:

{

 "metadata": {

 "id": "booleanCondition",

 "name": "booleanCondition",

 "description": "",

 "systemTags": [

 "profileTags",

 "logical",

 "condition",

 "profileCondition",

 "eventCondition",

 "sessionCondition",

 "sourceEventCondition"

],

 "readOnly": true

 },

 "conditionEvaluator": "booleanConditionEvaluator",

 "queryBuilder": "booleanConditionESQueryBuilder",

 "parameters": [

 {

 "id": "operator",

 "type": "String",

 "multivalued": false,

 "defaultValue": "and"

 },

 {

 "id": "subConditions",

 "type": "Condition",

 "multivalued": true

 }

]

}

Note that condition types have two important identifiers:

• conditionEvaluator

• queryBuilder

This is because condition types can either be used to build queries or to evaluate a condition in real

Apache Unomi 2.x - Documentation - 153

time. When implementing a new condition type, both implementations much be provided. Here’s an

example an OSGi Blueprint registration for the above condition type descriptor:

From https://github.com/apache/unomi/blob/master/plugins/baseplugin/src/main/resources/OSGI-INF/

blueprint/blueprint.xml

...

 <service

interface="org.apache.unomi.persistence.elasticsearch.conditions.ConditionESQueryBuilder">

 <service-properties>

 <entry key="queryBuilderId" value="booleanConditionESQueryBuilder"/>

 </service-properties>

 <bean

class="org.apache.unomi.plugins.baseplugin.conditions.BooleanConditionESQueryBuilder"/>

 </service>

...

 <!-- Condition evaluators -->

 <service interface="org.apache.unomi.persistence.elasticsearch.conditions.ConditionEvaluator">

 <service-properties>

 <entry key="conditionEvaluatorId" value="booleanConditionEvaluator"/>

 </service-properties>

 <bean class="org.apache.unomi.plugins.baseplugin.conditions.BooleanConditionEvaluator"/>

 </service>

...

As you can see two Java classes are used to build a single condition type. You don’t need to understand

all these details in order to use condition types, but this might be interesting to know if you’re interested

in building your own condition type implementations. For more details on building your own custom

plugins/extensions, please refer to the corresponding sections.

13.24.1. EXISTING CONDITION TYPE DESCRIPTORS

Here is a non-exhaustive list of condition types built into Apache Unomi. Feel free to browse the source

code if you want to discover more. But the list below should get you started with the most useful

conditions:

• https://github.com/apache/unomi/tree/master/plugins/baseplugin/src/main/resources/META-INF/cxs/

conditions

Of course it is also possible to build your own custom condition types by developing custom Unomi

plugins/extensions.

You will also note that some condition types can re-use a parentCondition. This is a way to inherit from

another condition type to make them more specific.

13.25. BUILT-IN ACTION TYPES

Unomi comes with quite a lot of built-in action types. Instead of detailing them one by one you will find

here an overview of what an action type descriptor looks like:

Apache Unomi 2.x - Documentation - 154

https://github.com/apache/unomi/blob/master/plugins/baseplugin/src/main/resources/OSGI-INF/blueprint/blueprint.xml
https://github.com/apache/unomi/blob/master/plugins/baseplugin/src/main/resources/OSGI-INF/blueprint/blueprint.xml
https://github.com/apache/unomi/tree/master/plugins/baseplugin/src/main/resources/META-INF/cxs/conditions
https://github.com/apache/unomi/tree/master/plugins/baseplugin/src/main/resources/META-INF/cxs/conditions

{

 "metadata": {

 "id": "UNIQUE_IDENTIFIER_STRING",

 "name": "DISPLAYABLE_ACTION_NAME",

 "description": "DISPLAYABLE_ACTION_DESCRIPTION",

 "systemTags": [

 "profileTags",

 "event",

 "availableToEndUser",

 "allowMultipleInstances"

],

 "readOnly": true

 },

 "actionExecutor": "ACTION_EXECUTOR_ID",

 "parameters": [

 ... parameters specific to each action ...

]

}

The ACTION_EXECUTOR_ID points to a OSGi Blueprint parameter that is defined when implementing the

action in a plugin. Here’s an example of such a registration:

From https://github.com/apache/unomi/blob/master/plugins/mail/src/main/resources/OSGI-INF/

blueprint/blueprint.xml

 <bean id="sendMailActionImpl" class="org.apache.unomi.plugins.mail.actions.SendMailAction">

 <!-- ... bean properties ... -->

 </bean>

 <service id="sendMailAction" ref="sendMailActionImpl"

interface="org.apache.unomi.api.actions.ActionExecutor">

 <service-properties>

 <entry key="actionExecutorId" value="sendMail"/>

 </service-properties>

 </service>

In the above example the ACTION_EXECUTOR_ID is sendMail

13.25.1. EXISTING ACTION TYPES DESCRIPTORS

Here is a non-exhaustive list of actions built into Apache Unomi. Feel free to browse the source code if

you want to discover more. But the list below should get you started with the most useful actions:

• https://github.com/apache/unomi/tree/master/plugins/baseplugin/src/main/resources/META-INF/cxs/

actions

• https://github.com/apache/unomi/tree/master/plugins/request/src/main/resources/META-INF/cxs/

actions

• https://github.com/apache/unomi/tree/master/plugins/mail/src/main/resources/META-INF/cxs/

actions

Apache Unomi 2.x - Documentation - 155

https://github.com/apache/unomi/blob/master/plugins/mail/src/main/resources/OSGI-INF/blueprint/blueprint.xml
https://github.com/apache/unomi/blob/master/plugins/mail/src/main/resources/OSGI-INF/blueprint/blueprint.xml
https://github.com/apache/unomi/tree/master/plugins/baseplugin/src/main/resources/META-INF/cxs/actions
https://github.com/apache/unomi/tree/master/plugins/baseplugin/src/main/resources/META-INF/cxs/actions
https://github.com/apache/unomi/tree/master/plugins/request/src/main/resources/META-INF/cxs/actions
https://github.com/apache/unomi/tree/master/plugins/request/src/main/resources/META-INF/cxs/actions
https://github.com/apache/unomi/tree/master/plugins/mail/src/main/resources/META-INF/cxs/actions
https://github.com/apache/unomi/tree/master/plugins/mail/src/main/resources/META-INF/cxs/actions

Of course it is also possible to build your own custom actions by developing custom Unomi

plugins/extensions.

13.26. UPDATING EVENTS USING THE CONTEXT SERVLET

One of the use cases that needed to be supported by Unomi is the ability to build a user profile based on

Internal System events or Change Data Capture which usally transported through internal messaging

queues such as Kafka.

This can easily achieved using the KafkaInjector module built in within Unomi.

But, as streaming system usually operates in at-least-once semantics, we need to have a way to

guarantee we wont have duplicate events in the system.

13.26.1. SOLUTION

One of the solutions to this scenario is to have the ability to control and pass in the eventId property

from outside of Unomi, Using an authorized 3rd party. This way whenever an event with the same

itemId will be processed once again he wont be appended to list of events, but will be updated.

Here is an example of a request contains the itemdId

curl -X POST http://localhost:8181/cxs/context.json \

-H "Content-Type: application/json" \

-d @- <<'EOF'

{

 "events":[

 {

 "itemId": "exampleEventId",

 "eventType":"view",

 "scope": "example",

 "properties" : {

 "firstName" : "example"

 }

 }

]

}

EOF

Make sure to use an authorized third party using X-Unomi-Peer requests headers and that the eventType

is in the list of allowed events

13.26.2. DEFINING RULES

Another use case we support is the ability to define a rule on the above mentioned events. If we have a

rule that increment a property on profile level, we would want the action to be executed only once per

event id. this can be achieved by adding "raiseEventOnlyOnce": false to the rule definition.

Apache Unomi 2.x - Documentation - 156

https://en.wikipedia.org/wiki/Change_data_capture
https://dzone.com/articles/kafka-clients-at-most-once-at-least-once-exactly-o

curl -X POST http://localhost:8181/cxs/context.json \

-H "Content-Type: application/json" \

-d @- <<'EOF'

{

 "metadata": {

 "id": "updateNumberOfOrders",

 "name": "update number of orders on orderCreated eventType",

 "description": "update number of orders on orderCreated eventType"

 },

 "raiseEventOnlyOnce": false,

 "condition": {

 "type": "eventTypeCondition",

 "parameterValues": {

 "eventTypeId": "orderCreated"

 }

 },

 "actions": [

 {

 "parameterValues": {

 "setPropertyName": "properties.nbOfOrders",

 "setPropertyValue": "script::profile.properties.?nbOfOrders != null ?

(profile.properties.nbOfOrders + 1) : 1",

 "storeInSession": false

 },

 "type": "setPropertyAction"

 }

]

}

EOF

13.27. UNOMI WEB TRACKER REFERENCE

In this section of the documentation, more details are provided about the web tracker provided by

Unomi.

13.27.1. CUSTOM EVENTS

In order to be able to use your own custom events with the web tracker, you must first declare them in

Unomi so that they are properly recognized and validated by the /context.json or /eventcollector

endpoints.

DECLARING JSON SCHEMA

The first step is to declare a JSON schema for your custom event type. Here’s an example of such a

declaration:

Apache Unomi 2.x - Documentation - 157

{

 "$id": "https://unomi.apache.org/schemas/json/events/click/1-0-0",

 "$schema": "https://json-schema.org/draft/2019-09/schema",

 "self": {

 "vendor": "org.apache.unomi",

 "target": "events",

 "name": "click",

 "format": "jsonschema",

 "version": "1-0-0"

 },

 "title": "ClickEvent",

 "type": "object",

 "allOf": [

 {

 "$ref": "https://unomi.apache.org/schemas/json/event/1-0-0"

 }

],

 "properties": {

 "source": {

 "$ref": "https://unomi.apache.org/schemas/json/items/page/1-0-0"

 },

 "target": {

 "$ref": "https://unomi.apache.org/schemas/json/item/1-0-0"

 }

 },

 "unevaluatedProperties": false

}

The above example comes from a built-in event type that is already declared in Unomi but that

illustrates the structure of a JSON schema. It is not however the objective of this section of the

documentation to go into the details of how to declare a JSON schema, instead, we recommend you go to

the corresponding section of the documentation.

SENDING EVENT FROM TRACKER

In the Unomi web tracker, you can use the following function to send an event to Unomi:

 /**

 * This function will send an event to Apache Unomi

 * @param {object} event The event object to send, you can build it using

wem.buildEvent(eventType, target, source)

 * @param {function} successCallback optional, will be executed in case of success

 * @param {function} errorCallback optional, will be executed in case of error

 * @return {undefined}

 */

 collectEvent: function (event, successCallback = undefined, errorCallback = undefined)

As you can see this function is quite straight forward to use. There are also helper functions to build

events, such as :

Apache Unomi 2.x - Documentation - 158

 /**

 * This function return the basic structure for an event, it must be adapted to your need

 *

 * @param {string} eventType The name of your event

 * @param {object} [target] The target object for your event can be build with

wem.buildTarget(targetId, targetType, targetProperties)

 * @param {object} [source] The source object for your event can be build with

wem.buildSource(sourceId, sourceType, sourceProperties)

 * @returns {object} the event

 */

 buildEvent: function (eventType, target, source)

 /**

 * This function return an event of type form

 *

 * @param {string} formName The HTML name of id of the form to use in the target of the event

 * @param {HTMLFormElement} form optional HTML form element, if provided will be used to

extract the form fields and populate the form event

 * @returns {object} the form event

 */

 buildFormEvent: function (formName, form = undefined)

 /**

 * This function return the source object for a source of type page

 *

 * @returns {object} the target page

 */

 buildTargetPage: function ()

 /**

 * This function return the source object for a source of type page

 *

 * @returns {object} the source page

 */

 buildSourcePage: function ()

 /**

 * This function return the basic structure for the target of your event

 *

 * @param {string} targetId The ID of the target

 * @param {string} targetType The type of the target

 * @param {object} [targetProperties] The optional properties of the target

 * @returns {object} the target

 */

 buildTarget: function (targetId, targetType, targetProperties = undefined)

 /**

 * This function return the basic structure for the source of your event

 *

 * @param {string} sourceId The ID of the source

 * @param {string} sourceType The type of the source

 * @param {object} [sourceProperties] The optional properties of the source

 * @returns {object} the source

 */

 buildSource: function (sourceId, sourceType, sourceProperties = undefined)

Apache Unomi 2.x - Documentation - 159

Here’s an example of using these helper functions and the collectEvent function alltogether:

 var clickEvent = wem.buildEvent('click',

 wem.buildTarget('buttonId', 'button'),

 wem.buildSourcePage());

 wem.collectEvent(clickEvent, function (xhr) {

 console.info('Click event successfully collected.');

 }, function (xhr) {

 console.error('Could not send click event.');

 });

SENDING MULTIPLE EVENTS

In some cases, especially when multiple events must be sent fast and the order of the events is critical

for rules to be properly executed, it is better to use another function called collectEvents that will batch

the sending of events to Unomi in a single HTTP request. Here’s the signature of this function:

 /**

 * This function will send the events to Apache Unomi

 *

 * @param {object} events Javascript object { events: [event1, event2] }

 * @param {function} successCallback optional, will be executed in case of success

 * @param {function} errorCallback optional, will be executed in case of error

 * @return {undefined}

 */

 collectEvents: function (events, successCallback = undefined, errorCallback = undefined)

This function is almost exactly the same as the collectEvent method except that it takes an events array

instead of a single one. The events in the array may be of any mixture of types.

EXTENDING EXISTING EVENTS

An alternative to defining custom event types is to extend existing event types. This, for example, can be

used to add new properties to the built-in view event type.

For more information about event type extensions, please read the JSON schema section of this

documentation.

13.27.2. INTEGRATING WITH TAG MANAGERS

Integrating with tag managers such as Google Tag Manager is an important part of the way trackers can

be added to an existing site. Unomi’s web tracker should be pretty easy to integrate with such tools: you

simply need to insert the script tag to load the script and then another tag to initialize it and map any tag

manager variables you want.

Personalization scripts should however be modified to check for the existence of the tracker object in

the page because tag managers might deactivate scripts based on conditions such as GDPR approval,

cookie preferences, …

Apache Unomi 2.x - Documentation - 160

13.27.3. COOKIE/SESSION HANDLING

In order to track profiles, an identifier must be stored in the browser so that subsequent requests can

keep a reference to the visitor’s profile. Also, a session identifier must be generated to group the current

visitor interactions.

Unomi’s web tracker uses 3 cookies in the tracker by default:

• server profile ID, called context-profile-id by default, that is sent from the Unomi server

• web tracker profile ID, called web-profile-id by default (this is a copy of the server profile ID that

can be managed by the tracker directly)

• web tracker session ID, called wem-session-id by default

It is possible to change the name of these cookie by passing the following properties to the start’s

initialization:

 "wemInitConfig": {

 ...

 "contextServerCookieName": "context-profile-id",

 "trackerSessionIdCookieName": "unomi-tracker-test-session-id",

 "trackerProfileIdCookieName": "unomi-tracker-test-profile-id"

 }

Please note however that the contextServerCookieName will also have to be changed in the server

configuration in order for it to work. See the Configuration section for details on how to do this.

For session tracking, it is important to provide a value for the cookie otherwise the tracker will not

initialize (a message is displayed in the console that explains that the session cookie is missing). Here is

the code excerpt from the initialization code used in the tutorial that creates the initial cookie value.

 // generate a new session

 if

(unomiWebTracker.getCookie(unomiTrackerTestConf.wemInitConfig.trackerSessionIdCookieName)

== null) {

unomiWebTracker.setCookie(unomiTrackerTestConf.wemInitConfig.trackerSessionIdCookieName,

unomiWebTracker.generateGuid(), 1);

 }

Note that this is just an example, you could very well customize this code to create session IDs another

way.

13.27.4. JAVASCRIPT API

The JavaScript API for the web tracker is directly provided in the source code of the web tracker. You

can find it here: https://github.com/apache/unomi-tracker/blob/main/src/apache-unomi-tracker.js

Apache Unomi 2.x - Documentation - 161

https://github.com/apache/unomi-tracker/blob/main/src/apache-unomi-tracker.js

Please note that only the functions that do NOT start with an underscore should be used. The ones that

start with an underscore are not considered part of the public API and could change or even be removed

at any point in the future.

14. INTEGRATION SAMPLES

14.1. SAMPLES

Apache Unomi provides the following samples:

• Twitter integration

• Login integration

14.2. LOGIN SAMPLE

This samples is an example of what is involved in integrated a login with Apache Unomi.

14.2.1. WARNING !

The example code uses client-side Javascript code to send the login event. This is only done this way for

the sake of samples simplicity but if should NEVER BE DONE THIS WAY in real cases.

The login event should always be sent from the server performing the actual login since it must only be

sent if the user has authenticated properly, and only the authentication server can validate this.

14.2.2. INSTALLING THE SAMPLES

Login into the Unomi Karaf SSH shell using something like this :

ssh -p 8102 karaf@localhost (default password is karaf)

Install the login samples using the following command:

bundle:install mvn:org.apache.unomi/login-integration-sample/${project.version}

when the bundle is successfully install you will get an bundle ID back we will call it BUNDLE_ID.

You can then do:

bundle:start BUNDLE_ID

If all went well you can access the login samples HTML page here :

Apache Unomi 2.x - Documentation - 162

http://localhost:8181/login/index.html

You can fill in the form to test it. Note that the hardcoded password is:

test1234

14.3. TWITTER SAMPLE

14.3.1. OVERVIEW

We will examine how a simple HTML page can interact with Unomi to enrich a user’s profile. The use

case we will follow is a rather simple one: we use a Twitter button to record the number of times the

visitor tweeted (as a tweetNb profile integer property) as well as the URLs they tweeted from (as a

tweetedFrom multi-valued string profile property). A javascript script will use the Twitter API to react to

clicks on this button and update the user profile using a ContextServlet request triggering a custom

event. This event will, in turn, trigger a Unomi action on the server implemented using a Unomi plugin,

a standard extension point for the server.

BUILDING THE TWEET BUTTON SAMPLES

In your local copy of the Unomi repository and run:

cd samples/tweet-button-plugin

mvn clean install

This will compile and create the OSGi bundle that can be deployed on Unomi to extend it.

DEPLOYING THE TWEET BUTTON SAMPLES

In standard Karaf fashion, you will need to copy the samples bundle to your Karaf deploy directory.

If you are using the packaged version of Unomi (as opposed to deploying it to your own Karaf version),

you can simply run, assuming your current directory is samples/tweet-button-plugin and that you

uncompressed the archive in the directory it was created:

cp target/tweet-button-plugin-2.0.0-SNAPSHOT.jar ../../package/target/unomi-2.0.0-SNAPSHOT/deploy

TESTING THE SAMPLES

You can now go to http://localhost:8181/twitter/index.html to test the samples code. The page is very

simple, you will see a Twitter button, which, once clicked, will open a new window to tweet about the

current page. The original page should be updated with the new values of the properties coming from

Unomi. Additionnally, the raw JSON response is displayed.

Apache Unomi 2.x - Documentation - 163

http://localhost:8181/twitter/index.html

We will now explain in greater details some concepts and see how the example works.

14.3.2. INTERACTING WITH THE CONTEXT SERVER

There are essentially two modalities to interact with the context server, reflecting different types of

Unomi users: context server clients and context server integrators.

Context server clients are usually web applications or content management systems. They interact

with Unomi by providing raw, uninterpreted contextual data in the form of events and associated

metadata. That contextual data is then processed by the context server to be fed to clients once

actionable. In that sense context server clients are both consumers and producers of contextual data.

Context server clients will mostly interact with Unomi using a single entry point called the

ContextServlet, requesting context for the current user and providing any triggered events along the

way.

On the other hand, context server integrators provide ways to feed more structured data to the context

server either to integrate with third party services or to provide analysis of the uninterpreted data

provided by context server clients. Such integration will mostly be done using Unomi’s API either

directly using Unomi plugins or via the provided REST APIs. However, access to REST APIs is restricted

due for security reasons, requiring privileged access to the Unomi server, making things a little more

complex to set up.

For simplicity’s sake, this document will focus solely on the first use case and will interact only with the

context servlet.

14.3.3. RETRIEVING CONTEXT INFORMATION FROM UNOMI USING THE
CONTEXT SERVLET

Unomi provides two ways to retrieve context: either as a pure JSON object containing strictly context

information or as a couple of JSON objects augmented with javascript functions that can be used to

interact with the Unomi server using the <context server base URL>/cxs/context.json or <context server

base URL>/context.js URLs, respectively.

Below is an example of asynchronously loading the initial context using the javascript version, assuming

a default Unomi install running on http://localhost:8181:

// Load context from Unomi asynchronously

(function (document, elementToCreate, id) {

 var js, fjs = document.getElementsByTagName(elementToCreate)[0];

 if (document.getElementById(id)) return;

 js = document.createElement(elementToCreate);

 js.id = id;

 js.src = 'http://localhost:8181/cxs/context.js';

 fjs.parentNode.insertBefore(js, fjs);

}(document, 'script', 'context'));

This initial context results in a javascript file providing some functions to interact with the context

server from javascript along with two objects: a cxs object containing information about the context for

the current user and a digitalData object that is injected into the browser’s window object (leveraging

Apache Unomi 2.x - Documentation - 164

http://localhost:8181

the Customer Experience Digital Data Layer standard). Note that this last object is not under control of

the context server and clients are free to use it or not. Our example will not make use of it.

On the other hand, the cxs top level object contains interesting contextual information about the current

user:

{

 "profileId":<identifier of the profile associated with the current user>,

 "sessionId":<identifier of the current user session>,

 "profileProperties":<requested profile properties, if any>,

 "sessionProperties":<requested session properties, if any>,

 "profileSegments":<segments the profile is part of if requested>,

 "filteringResults":<result of the evaluation of content filters>,

 "personalizations":<result of the evaluation of personalization filters>,

 "trackedConditions":<tracked conditions in the source page, if any>

}

We will look at the details of the context request and response later.

14.4. EXAMPLE

14.4.1. HTML PAGE

The code for the HTML page with our Tweet button can be found at

https://github.com/apache/unomi/blob/master/wab/src/main/webapp/index.html.

This HTML page is fairly straightforward: we create a tweet button using the Twitter API while a

Javascript script performs the actual logic.

14.4.2. JAVASCRIPT

Globally, the script loads both the twitter widget and the initial context asynchronously (as shown

previously). This is accomplished using fairly standard javascript code and we won’t look at it here.

Using the Twitter API, we react to the tweet event and call the Unomi server to update the user’s profile

with the required information, triggering a custom tweetEvent event. This is accomplished using a

contextRequest function which is an extended version of a classic AJAX request:

Apache Unomi 2.x - Documentation - 165

http://www.w3.org/2013/12/ceddl-201312.pdf
https://github.com/apache/unomi/blob/master/wab/src/main/webapp/index.html

function contextRequest(successCallback, errorCallback, payload) {

 var data = JSON.stringify(payload);

 // if we don't already have a session id, generate one

 var sessionId = cxs.sessionId || generateUUID();

 var url = 'http://localhost:8181/cxs/context.json?sessionId=' + sessionId;

 var xhr = new XMLHttpRequest();

 var isGet = data.length < 100;

 if (isGet) {

 xhr.withCredentials = true;

 xhr.open("GET", url + "&payload=" + encodeURIComponent(data), true);

 } else if ("withCredentials" in xhr) {

 xhr.open("POST", url, true);

 xhr.withCredentials = true;

 } else if (typeof XDomainRequest != "undefined") {

 xhr = new XDomainRequest();

 xhr.open("POST", url);

 }

 xhr.onreadystatechange = function () {

 if (xhr.readyState != 4) {

 return;

 }

 if (xhr.status ==== 200) {

 var response = xhr.responseText ? JSON.parse(xhr.responseText) : undefined;

 if (response) {

 cxs.sessionId = response.sessionId;

 successCallback(response);

 }

 } else {

 console.log("contextserver: " + xhr.status + " ERROR: " + xhr.statusText);

 if (errorCallback) {

 errorCallback(xhr);

 }

 }

 };

 xhr.setRequestHeader("Content-Type", "text/plain;charset=UTF-8"); // Use text/plain to avoid CORS

preflight

 if (isGet) {

 xhr.send();

 } else {

 xhr.send(data);

 }

}

There are a couple of things to note here:

• If we specify a payload, it is expected to use the JSON format so we stringify it and encode it if

passed as a URL parameter in a GET request.

• We need to make a CORS request since the Unomi server is most likely not running on the same

host than the one from which the request originates. The specific details are fairly standard and we

will not explain them here.

• We need to either retrieve (from the initial context we retrieved previously using cxs.sessionId) or

generate a session identifier for our request since Unomi currently requires one.

Apache Unomi 2.x - Documentation - 166

https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS

• We’re calling the ContextServlet using the default install URI, specifying the session identifier:

http://localhost:8181/cxs/context.json?sessionId=sessionId. This URI requests context from Unomi,

resulting in an updated cxs object in the javascript global scope. The context server can reply to this

request either by returning a JSON-only object containing solely the context information as is the

case when the requested URI is context.json. However, if the client requests context.js then useful

functions to interact with Unomi are added to the cxs object in addition to the context information

as depicted above.

• We don’t need to provide any authentication at all to interact with this part of Unomi since we only

have access to read-only data (as well as providing events as we shall see later on). If we had been

using the REST API, we would have needed to provide authentication information as well.

CONTEXT REQUEST AND RESPONSE STRUCTURE

The interesting part, though, is the payload. This is where we provide Unomi with contextual

information as well as ask for data in return. This allows clients to specify which type of information

they are interested in getting from the context server as well as specify incoming events or content

filtering or property/segment overrides for personalization or impersonation. This conditions what the

context server will return with its response.

Let’s look at the context request structure:

{

 "sessionId" : <optional session identifier>,

 "source": <Item source of the context request>,

 "events": <optional array of events to trigger>,

 "requiredProfileProperties": <optional array of property identifiers>,

 "requiredSessionProperties": <optional array of property identifiers>,

 filters: <optional array of filters to evaluate>,

 "personalitations": <optional array of personalizations to evaluate>,

 "profileOverrides": <optional profile containing segments,scores or profile properties to override>,

 - segments: <optional array of segment identifiers>,

 - profileProperties: <optional map of property name / value pairs>,

 - scores: <optional map of score id / value pairs>

 "sessionPropertiesOverrides": <optional map of property name / value pairs>,

 "requireSegments": <boolean, whether to return the associated segments>

}

We will now look at each part in greater details.

SOURCE

A context request payload needs to at least specify some information about the source of the request in

the form of an Item (meaning identifier, type and scope plus any additional properties we might have to

provide), via the source property of the payload. Of course the more information can be provided about

the source, the better.

FILTERS

A client wishing to perform content personalization might also specify filtering conditions to be

Apache Unomi 2.x - Documentation - 167

http://localhost:8181/cxs/context.json?sessionId=sessionId

evaluated by the context server so that it can tell the client whether the content associated with the filter

should be activated for this profile/session. This is accomplished by providing a list of filter definitions to

be evaluated by the context server via the filters field of the payload. If provided, the evaluation results

will be provided in the filteringResults field of the resulting cxs object the context server will send.

Here is an example of a filter request:

curl --location --request POST 'http://localhost:8181/cxs/context.json' \

--header 'Content-Type: application/json' \

--header 'Cookie: JSESSIONID=48C8AFB3E18B8E3C93C2F4D5B7BD43B7; context-profile-id=01060c4c-

a055-4c8f-9692-8a699d0c434a' \

--data-raw '{

 "source": null,

 "requireSegments": false,

 "requiredProfileProperties": null,

 "requiredSessionProperties": null,

 "events": null,

 "filters": [

 {

 "id" : "filter1",

 "filters" : [

 {

 "condition": {

 "parameterValues": {

 "propertyName": "properties.gender",

 "comparisonOperator": "equals",

 "propertyValue": "male"

 },

 "type": "profilePropertyCondition"

 }

 }

]

 }

],

 "personalizations": null,

 "profileOverrides": null,

 "sessionPropertiesOverrides": null,

 "sessionId": "demo-session-id"

}'

And here’s the result:

Apache Unomi 2.x - Documentation - 168

{

 "profileId": "01060c4c-a055-4c8f-9692-8a699d0c434a",

 "sessionId": "demo-session-id",

 "profileProperties": null,

 "sessionProperties": null,

 "profileSegments": null,

 "filteringResults": {

 "filter1": false

 },

 "processedEvents": 0,

 "personalizations": null,

 "trackedConditions": [],

 "anonymousBrowsing": false,

 "consents": {}

}

As we can see, the filter1 filter we sent in our request, in this example, evaluated to false for the current

profile, so we can use that result to perform any customization for the current profile, in this case use

the fact that he is male.

PERSONALIZATIONS

Filters make it possible to evaluate conditions against a profile in real-time, but for true personalization

it is needed to have a more powerful mechanism: strategies. Sometimes we want to provide multiple

variants that each have their own conditions and we want to know which is the best variant to use for

the current profile. This can be achieved with the personalizations structure in the ContextRequest.

Here is an example of a personalizations request:

Apache Unomi 2.x - Documentation - 169

curl --location --request POST 'http://localhost:8181/cxs/context.json' \

--header 'Content-Type: application/json' \

--header 'Cookie: JSESSIONID=48C8AFB3E18B8E3C93C2F4D5B7BD43B7; context-profile-id=01060c4c-

a055-4c8f-9692-8a699d0c434a' \

--data-raw '{

 "source": null,

 "requireSegments": false,

 "requiredProfileProperties": null,

 "requiredSessionProperties": ["unomiControlGroups"],

 "events": null,

 "filters": null,

 "personalizations": [

 {

 "id": "gender-test",

 "strategy": "matching-first",

 "strategyOptions": {

 "fallback": "var2",

 "controlGroup" : {

 "percentage" : 10.0,

 "displayName" : "Gender test control group",

 "path" : "/gender-test",

 "storeInSession" : true

 }

 },

 "contents": [

 {

 "id": "var1",

 "filters": [

 {

 "appliesOn": null,

 "condition": {

 "parameterValues": {

 "propertyName": "properties.gender",

 "comparisonOperator": "equals",

 "propertyValue": "male"

 },

 "type": "profilePropertyCondition"

 },

 "properties": null

 }

],

 "properties": null

 },

 {

 "id": "var2",

 "filters": null,

 "properties": null

 }

]

 }

],

 "profileOverrides": null,

 "sessionPropertiesOverrides": null,

 "sessionId": "demo-session-id"

}'

Apache Unomi 2.x - Documentation - 170

In the above example, we basically setup two variants : var1 and var2 and setup the var2 to be the

fallback variant in case no variant is matched. We could of course specify more than a variant. The

strategy indicates to the personalization service how to calculate the "winning" variant. In this case the

strategy matching-first will return variants that match the current profile. We also use the

controlGroups option to specify that we want to have a control group for this personalization. The 10.0

percentage value represents 10% (0.0 to 100.0) of traffic that will be assigned randomly to the control

group. The control group will be stored in the profile and the session of the visitors if they were assigned

to it. We also specify that we store the control group in the session (by default it is stored in the profile)

Currently the following strategies are available:

• matching-first: will return the variant IDs that match the current profile (using the initial content

order)

• random: will return a shuffled list of variant IDs (ignoring any conditions)

• score-sorted: allows to sort the variants based on scores associated with the filtering conditions,

effectively sorting them by the highest scoring condition first.

Here is the result of the above example:

{

 "profileId": "01060c4c-a055-4c8f-9692-8a699d0c434a",

 "sessionId": "demo-session-id",

 "profileProperties": null,

 "sessionProperties": {

 "unomiControlGroups": [

 {

 "id": "previousPerso",

 "displayName": "Previous perso",

 "path": "/home/previousPerso.html",

 "timeStamp": "2021-12-15T13:52:38Z"

 }

]

 },

 "profileSegments": null,

 "filteringResults": null,

 "processedEvents": 0,

 "personalizations": {

 "gender-test": [

 "var2"

]

 },

 "trackedConditions": [

],

 "anonymousBrowsing": false,

 "consents": {}

}

In the above example we can see the profile and session were assigned to other control groups but not

the current one (the ids are different).

Apache Unomi 2.x - Documentation - 171

OVERRIDES

It is also possible for clients wishing to perform user impersonation to specify properties or segments to

override the proper ones so as to emulate a specific profile, in which case the overridden value will

temporarily replace the proper values so that all rules will be evaluated with these values instead of the

proper ones. The segments (array of segment identifiers), profileProperties (maps of property name and

associated object value) and scores (maps of score id and value) all wrapped in a profileOverrides object

and the sessionPropertiesOverrides (maps of property name and associated object value) fields allow to

provide such information. Providing such overrides will, of course, impact content filtering results and

segments matching for this specific request.

CONTROLLING THE CONTENT OF THE RESPONSE

The clients can also specify which information to include in the response by setting the requireSegments

property to true if segments the current profile matches should be returned or provide an array of

property identifiers for requiredProfileProperties or requiredSessionProperties fields to ask the context

server to return the values for the specified profile or session properties, respectively. This information

is provided by the profileProperties, sessionProperties and profileSegments fields of the context server

response.

Additionally, the context server will also returns any tracked conditions associated with the source of

the context request. Upon evaluating the incoming request, the context server will determine if there are

any rules marked with the trackedCondition tag and which source condition matches the source of the

incoming request and return these tracked conditions to the client. The client can use these tracked

conditions to learn that the context server can react to events matching the tracked condition and

coming from that source. This is, in particular, used to implement form mapping (a solution that allows

clients to update user profiles based on values provided when a form is submitted).

EVENTS

Finally, the client can specify any events triggered by the user actions, so that the context server can

process them, via the events field of the context request.

DEFAULT RESPONSE

If no payload is specified, the context server will simply return the minimal information deemed

necessary for client applications to properly function: profile identifier, session identifier and any

tracked conditions that might exist for the source of the request.

CONTEXT REQUEST FOR OUR EXAMPLE

Now that we’ve seen the structure of the request and what we can expect from the context response,

let’s examine the request our component is doing.

In our case, our source item looks as follows: we specify a scope for our application (unomi-tweet-

button-samples), specify that the item type (i.e. the kind of element that is the source of our event) is a

page (which corresponds, as would be expected, to a web page), provide an identifier (in our case, a

Base-64 encoded version of the page’s URL) and finally, specify extra properties (here, simply a url

property corresponding to the page’s URL that will be used when we process our event in our Unomi

Apache Unomi 2.x - Documentation - 172

extension).

var scope = 'unomi-tweet-button-samples';

var itemId = btoa(window.location.href);

var source = {

 itemType: 'page',

 scope: scope,

 itemId: itemId,

 properties: {

 url: window.location.href

 }

};

We also specify that we want the context server to return the values of the tweetNb and tweetedFrom

profile properties in its response. Finally, we provide a custom event of type tweetEvent with associated

scope and source information, which matches the source of our context request in this case.

var contextPayload = {

 source: source,

 events: [

 {

 eventType: 'tweetEvent',

 scope: scope,

 source: source

 }

],

 requiredProfileProperties: [

 'tweetNb',

 'tweetedFrom'

]

};

The tweetEvent event type is not defined by default in Unomi. This is where our Unomi plugin comes

into play since we need to tell Unomi how to react when it encounters such events.

UNOMI PLUGIN OVERVIEW

In order to react to tweetEvent events, we will define a new Unomi rule since this is exactly what Unomi

rules are supposed to do. Rules are guarded by conditions and if these conditions match, the associated

set of actions will be executed. In our case, we want our new incrementTweetNumber rule to only react

to tweetEvent events and we want it to perform the profile update accordingly: create the property types

for our custom properties if they don’t exist and update them. To do so, we will create a custom

incrementTweetNumberAction action that will be triggered any time our rule matches. An action is

some custom code that is deployed in the context server and can access the Unomi API to perform what

it is that it needs to do.

RULE DEFINITION

Let’s look at how our custom incrementTweetNumber rule is defined:

Apache Unomi 2.x - Documentation - 173

https://github.com/apache/unomi/blob/master/samples/tweet-button-plugin/src/main/resources/META-INF/cxs/rules/incrementTweetNumber.json
https://github.com/apache/unomi/blob/master/samples/tweet-button-plugin/src/main/resources/META-INF/cxs/actions/incrementTweetNumberAction.json
https://github.com/apache/unomi/blob/master/samples/tweet-button-plugin/src/main/resources/META-INF/cxs/rules/incrementTweetNumber.json

{

 "metadata": {

 "id": "smp:incrementTweetNumber",

 "name": "Increment tweet number",

 "description": "Increments the number of times a user has tweeted after they click on a tweet

button"

 },

 "raiseEventOnlyOnceForSession": false,

 "condition": {

 "type": "eventTypeCondition",

 "parameterValues": {

 "eventTypeId": "tweetEvent"

 }

 },

 "actions": [

 {

 "type": "incrementTweetNumberAction",

 "parameterValues": {}

 }

]

}

Rules define a metadata section where we specify the rule name, identifier and description.

When rules trigger, a specific event is raised so that other parts of Unomi can react to it accordingly. We

can control how that event should be raised. Here we specify that the event should be raised each time

the rule triggers and not only once per session by setting raiseEventOnlyOnceForSession to false, which

is not strictly required since that is the default. A similar setting (raiseEventOnlyOnceForProfile) can be

used to specify that the event should only be raised once per profile if needed.

We could also specify a priority for our rule in case it needs to be executed before other ones when

similar conditions match. This is accomplished using the priority property. We’re using the default

priority here since we don’t have other rules triggering on `tweetEvent`s and don’t need any special

ordering.

We then tell Unomi which condition should trigger the rule via the condition property. Here, we specify

that we want our rule to trigger on an eventTypeCondition condition. Unomi can be extended by adding

new condition types that can enrich how matching or querying is performed. The condition type

definition file specifies which parameters are expected for our condition to be complete. In our case, we

use the built-in event type condition that will match if Unomi receives an event of the type specified in

the condition’s eventTypeId parameter value: tweetEvent here.

Finally, we specify a list of actions that should be performed as consequences of the rule matching. We

only need one action of type incrementTweetNumberAction that doesn’t require any parameters.

ACTION DEFINITION

Let’s now look at our custom incrementTweetNumberAction action type definition:

Apache Unomi 2.x - Documentation - 174

https://github.com/apache/unomi/blob/master/samples/tweet-button-plugin/src/main/resources/META-INF/cxs/actions/incrementTweetNumberAction.json

{

 "id": "incrementTweetNumberAction",

 "actionExecutor": "incrementTweetNumber",

 "systemTags": [

 "event"

],

 "parameters": []

}

We specify the identifier for the action type, a list of systemTags if needed: here we say that our action is

a consequence of events using the event tag. Our actions does not require any parameters so we don’t

define any.

Finally, we provide a mysterious actionExecutor identifier: incrementTweetNumber.

ACTION EXECUTOR DEFINITION

The action executor references the actual implementation of the action as defined in our blueprint

definition:

<blueprint xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"

 xsi:schemaLocation="http://www.osgi.org/xmlns/blueprint/v1.0.0

http://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd">

 <reference id="profileService" interface="org.apache.unomi.api.services.ProfileService"/>

 <!-- Action executor -->

 <service id="incrementTweetNumberAction"

interface="org.apache.unomi.api.actions.ActionExecutor">

 <service-properties>

 <entry key="actionExecutorId" value="incrementTweetNumber"/>

 </service-properties>

 <bean

class="org.apache.unomi.examples.unomi_tweet_button_plugin.actions.IncrementTweetNumberAct

ion">

 <property name="profileService" ref="profileService"/>

 </bean>

 </service>

</blueprint>

In standard Blueprint fashion, we specify that we will need the profileService defined by Unomi and

then define a service of our own to be exported for Unomi to use. Our service specifies one property:

actionExecutorId which matches the identifier we specified in our action definition. We then inject the

profile service in our executor and we’re done for the configuration side of things!

ACTION EXECUTOR IMPLEMENTATION

Our action executor definition specifies that the bean providing the service is implemented in the

org.apache.unomi.samples.tweet_button_plugin.actions .IncrementTweetNumberAction class. This class

Apache Unomi 2.x - Documentation - 175

https://github.com/apache/unomi/blob/master/samples/tweet-button-plugin/src/main/resources/OSGI-INF/blueprint/blueprint.xml
https://github.com/apache/unomi/blob/master/samples/tweet-button-plugin/src/main/resources/OSGI-INF/blueprint/blueprint.xml
https://github.com/apache/unomi/blob/master/samples/tweet-button-plugin/src/main/java/org/apache/unomi/samples/tweet_button_plugin/actions/IncrementTweetNumberAction.java

implements the Unomi ActionExecutor interface which provides a single int execute(Action action,

Event event) method: the executor gets the action instance to execute along with the event that triggered

it, performs its work and returns an integer status corresponding to what happened as defined by public

constants of the EventService interface of Unomi: NO_CHANGE, SESSION_UPDATED or

PROFILE_UPDATED.

Let’s now look at the implementation of the method:

final Profile profile = event.getProfile();

Integer tweetNb = (Integer) profile.getProperty(TWEET_NB_PROPERTY);

List<String> tweetedFrom = (List<String>) profile.getProperty(TWEETED_FROM_PROPERTY);

if (tweetNb ==== null || tweetedFrom ==== null) {

 // create tweet number property type

 PropertyType propertyType = new PropertyType(new Metadata(event.getScope(),

TWEET_NB_PROPERTY, TWEET_NB_PROPERTY, "Number of times a user tweeted"));

 propertyType.setValueTypeId("integer");

 service.createPropertyType(propertyType);

 // create tweeted from property type

 propertyType = new PropertyType(new Metadata(event.getScope(), TWEETED_FROM_PROPERTY,

TWEETED_FROM_PROPERTY, "The list of pages a user tweeted from"));

 propertyType.setValueTypeId("string");

 propertyType.setMultivalued(true);

 service.createPropertyType(propertyType);

 tweetNb = 0;

 tweetedFrom = new ArrayList<>();

}

profile.setProperty(TWEET_NB_PROPERTY, tweetNb + 1);

final String sourceURL = extractSourceURL(event);

if (sourceURL != null) {

 tweetedFrom.add(sourceURL);

}

profile.setProperty(TWEETED_FROM_PROPERTY, tweetedFrom);

return EventService.PROFILE_UPDATED;

It is fairly straightforward: we retrieve the profile associated with the event that triggered the rule and

check whether it already has the properties we are interested in. If not, we create the associated

property types and initialize the property values.

Note that it is not an issue to attempt to create the same property type

multiple times as Unomi will not add a new property type if an identical

type already exists.

Once this is done, we update our profile with the new property values based on the previous values and

the metadata extracted from the event using the extractSourceURL method which uses our url property

that we’ve specified for our event source. We then return that the profile was updated as a result of our

action and Unomi will properly save it for us when appropriate. That’s it!

Apache Unomi 2.x - Documentation - 176

For reference, here’s the extractSourceURL method implementation:

private String extractSourceURL(Event event) {

 final Item sourceAsItem = event.getSource();

 if (sourceAsItem instanceof CustomItem) {

 CustomItem source = (CustomItem) sourceAsItem;

 final String url = (String) source.getProperties().get("url");

 if (url != null) {

 return url;

 }

 }

 return null;

}

14.5. CONCLUSION

We have seen a simple example how to interact with Unomi using a combination of client-side code and

Unomi plugin. Hopefully, this provided an introduction to the power of what Unomi can do and how it

can be extended to suit your needs.

14.6. ANNEX

Here is an overview of how Unomi processes incoming requests to the ContextServlet.

Apache Unomi 2.x - Documentation - 177

14.7. WEATHER UPDATE SAMPLE

15. CONNECTORS

15.1. CONNECTORS

Apache Unomi provides the following connectors:

Apache Unomi 2.x - Documentation - 178

• Salesforce CRM connector

15.1.1. CALL FOR CONTRIBUTORS

We are looking for help with the development of additional connectors. Any contribution (large or

small) is more than welcome. Feel free to discuss this in our mailing list.

15.2. SALESFORCE CONNECTOR

This connectors makes it possible to push and pull data to/from the Salesforce CRM. It can copy

information between Apache Unomi profiles and Salesforce Leads.

15.2.1. GETTING STARTED

SALESFORCE ACCOUNT SETUP

1. Create a new developer account here:

https://developer.salesforce.com/signup

2. Create a new Connected App, by going into Setup -> App Manager and click "Create Connected App"

3. In the settings, make sure you do the following:

Enable OAuth settings -> Activated

Enable for device flow -> Activated (no need for a callback URL)

Add all the selected OAuth scopes you want (or put all of them)

Make sure Require Secret for Web Server flow is activated

4. Make sure you retrieve the following information once you have created the app in the API (Enable

OAuth Settings):

Consumer key

Consumer secret (click to see it)

5. You must also retrieve your user’s security token, or create it if you don’t have one already. To do

this simply click on your user at the top right, select "Settings", the click on "Reset my security

token". You will receive an email with the security token.

APACHE UNOMI SETUP

1. You are now ready to configure the Apache Unomi Salesforce Connector. In the

etc/unomi.custom.system.properties file add/change the following settings:

Apache Unomi 2.x - Documentation - 179

http://unomi.apache.org/community/

org.apache.unomi.sfdc.user.username=${env:UNOMI_SFDC_USER_USERNAME:-}

org.apache.unomi.sfdc.user.password=${env:UNOMI_SFDC_USER_PASSWORD:-}

org.apache.unomi.sfdc.user.securityToken=${env:UNOMI_SFDC_USER_SECURITYTOKEN:-}

org.apache.unomi.sfdc.consumer.key=${env:UNOMI_SFDC_CONSUMER_KEY:-}

org.apache.unomi.sfdc.consumer.secret=${env:UNOMI_SFDC_CONSUMER_SECRET:-}

DEPLOYMENT FROM MAVEN REPOSITORY

In this procedure we assume you have access to a Maven repository that contains a compiled version of

the Salesforce connector. If this is not the case or you prefer to deploy using a KAR bundle, see the KAR

deployment instructions instead.

1. Connect to the Apache Unomi Karaf Shell using :

ssh -p 8102 karaf@localhost (default password is karaf)

2. Deploy into Apache Unomi using the following commands from the Apache Karaf shell:

feature:repo-add mvn:org.apache.unomi/unomi-salesforce-connector-karaf-

kar/${project.version}/xml/features

feature:install unomi-salesforce-connector-karaf-kar

DEPLOYMENT USING KAR BUNDLE

If you have a KAR bundle (for example after building from source in the extensions/salesforce-

connector/karaf-kar/target directory), you can follow these steps to install :

1. Ensure that Apache Karaf and Apache Unomi are started

2. Execute the following command in karaf: feature:install unomi-salesforce-connector-karaf-kar

3. The installation is done !

TESTING THE CONNECTOR

1. You can then test the connection to Salesforce by accessing the following URLs:

https://localhost:9443/cxs/sfdc/version

https://localhost:9443/cxs/sfdc/limits

The first URL will give you information about the version of the connectors, so this makes it easy to

check that the plugin is properly deployed, started and the correct version. The second URL will

actually make a request to the Salesforce REST API to retrieve the limits of the Salesforce API.

Both URLs are password protected by the Apache Unomi (Karaf) password. You can find this user

Apache Unomi 2.x - Documentation - 180

and password information in the etc/users.properties file.

You can now use the connectors’s defined actions in rules to push or pull data to/from the Salesforce

CRM. You can find more information about rules in the Data Model and the Getting Started pages.

15.2.2. PROPERTIES

To define how Salesforce attributes will be mapped to Unomi profile properties, edit the following entry

using the pattern below :

org.apache.unomi.sfdc.fields.mappings=${env:UNOMI_SFDC_FIELDS_MAPPINGS:-

email<=>Email,firstName<=>FirstName,lastName<=>LastName,company<=>Company,phoneNumbe

r<=>Phone,jobTitle<=>Title,city<=>City,zipCode<=>PostalCode,address<=>Street,sfdcStatus<=>Status,

sfdcRating<=>Rating}

Please note that Salesforce needs the company and the last name to be set, otherwise the lead won’t be

created. An identifier needs to be set as well. The identifier will be used to map the Unomi profile to the

Salesforce lead. By default, the email is set as the identifier, meaning that if a lead in Salesforce and a

profile in Unomi have the same email, they’ll be considered as the same person.

org.apache.unomi.sfdc.fields.mappings.identifier=${env:UNOMI_SFDC_FIELDS_MAPPINGS_IDENTIF

IER:-email<=>Email}

15.2.3. HOT-DEPLOYING UPDATES TO THE SALESFORCE CONNECTOR (FOR
DEVELOPERS)

If you followed all the steps in the Getting Started section, you can upgrade the Salesforce connectors by

using the following steps:

1. Compile the connectors using:

cd extensions/salesforce-connector

mvn clean install

2. Login to the Unomi Karaf Shell using:

ssh -p 8102 karaf@localhost (password by default is karaf)

3. Execute the following commands in the Karaf shell

feature:repo-refresh

feature:uninstall unomi-salesforce-connector-karaf-feature

feature:install unomi-salesforce-connector-karaf-feature

Apache Unomi 2.x - Documentation - 181

4. You can then check that the new version is properly deployed by accessing the following URL and

checking the build date:

https://localhost:9443/cxs/sfdc/version

(if asked for a password it’s the same karaf/karaf default)

15.2.4. USING THE SALESFORCE WORKBENCH FOR TESTING REST API

The Salesforce Workbench contains a REST API Explorer that is very useful to test requests. You may

find it here :

https://workbench.developerforce.com/restExplorer.php

15.2.5. SETTING UP STREAMING PUSH QUERIES

Using the Salesforce Workbench, you can setting streaming push queries (Queries->Streaming push

topics) such as the following example:

Name: LeadUpdates

Query : SELECT Id,FirstName,LastName,Email,Company FROM Lead

15.2.6. EXECUTING THE UNIT TESTS

Before running the tests, make sure you have completed all the steps above, including the streaming

push queries setup.

By default the unit tests will not run as they need proper Salesforce credentials to run. To set this up

create a properties file like the following one:

test.properties

Apache Unomi 2.x - Documentation - 182

#

Licensed to the Apache Software Foundation (ASF) under one or more

contributor license agreements. See the NOTICE file distributed with

this work for additional information regarding copyright ownership.

The ASF licenses this file to You under the Apache License, Version 2.0

(the "License"); you may not use this file except in compliance with

the License. You may obtain a copy of the License at

#

http://www.apache.org/licenses/LICENSE-2.0

#

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

#

sfdc.user.username=YOUR_USER_NAME

sfdc.user.password=YOUR_PASSWORD

sfdc.user.securityToken=YOUR_USER_SECURITY_TOKEN

sfdc.consumer.key=CONNECTED_APP_CONSUMER_KEY

sfdc.consumer.secret=CONNECTED_APP_SECRET

and then use the following command line to reference the file:

cd extensions/salesforce-connector

mvn clean install -DsfdcProperties=../test.properties

(in case you’re wondering the ../ is because the test is located in the services sub-directory)

16. DEVELOPERS

16.1. BUILDING

16.1.1. INITIAL SETUP

1. Install J2SE 11 SDK (or later), which can be downloaded from

http://www.oracle.com/technetwork/java/javase/downloads/index.html

2. Make sure that your JAVA_HOME environment variable is set to the newly installed JDK location,

and that your PATH includes %JAVA_HOME%\bin (windows) or $JAVA_HOME$/bin (unix).

3. Install Maven 3.0.3 (or later), which can be downloaded from

http://maven.apache.org/download.html. Make sure that your PATH includes the MVN_HOME/bin

directory.

16.1.2. BUILDING

1. Get the code: git clone https://github.com/apache/unomi.git

Apache Unomi 2.x - Documentation - 183

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://maven.apache.org/download.html
https://github.com/apache/unomi.git

2. Change to the top level directory of Apache Unomi source distribution.

3. Run

 $> mvn clean install

This will compile Apache Unomi and run all of the tests in the Apache Unomi source distribution.

Alternatively, you can run

 $> mvn -P \!integration-tests clean install

This will compile Apache Unomi without running the tests and takes less time to build.



On a non-English Windows env, the Asciidoctor Maven Plugin may fail to

generate manuals due to an encoding conversion issue. To solve this issue, we

recommend setting the file.encoding system property to UTF-8 like the

following examples before issuing the commands shown above.

 > set MAVEN_OPTS=-Dfile.encoding=UTF-8

 or

 > set MAVEN_OPTS=-Dfile.encoding=UTF-8 -Xmx2048m

 ...

4. The distributions will be available under "package/target" directory.

16.1.3. INSTALLING AN ELASTICSEARCH SERVER

Starting with version 1.2, Apache Unomi no longer embeds an ElasticSearch server as this is no longer

supported by the developers of ElasticSearch. Therefore you will need to install a standalone

ElasticSearch using the following steps:

Download an ElasticSearch version. Here’s the version you will need depending on your version of

Apache Unomi.

Apache Unomi <= 1.2 : https://www.elastic.co/downloads/past-releases/elasticsearch-5-1-2 Apache Unomi

>= 1.3 : https://www.elastic.co/downloads/past-releases/elasticsearch-5-6-3 Apache Unomi >= 1.5 :

https://www.elastic.co/downloads/past-releases/elasticsearch-7-4-2

Uncompress the downloaded package into a directory

In the config/elasticsearch.yml file, uncomment and modify the following line :

cluster.name: contextElasticSearch

Apache Unomi 2.x - Documentation - 184

https://www.elastic.co/downloads/past-releases/elasticsearch-5-1-2
https://www.elastic.co/downloads/past-releases/elasticsearch-5-6-3
https://www.elastic.co/downloads/past-releases/elasticsearch-7-4-2

Launch the server using

bin/elasticsearch (Mac, Linux)

bin\elasticsearch.bat (Windows)

Check that the ElasticSearch is up and running by accessing the following URL :

http://localhost:9200

16.1.4. DEPLOYING THE GENERATED BINARY PACKAGE

The "package" sub-project generates a pre-configured Apache Karaf installation that is the simplest way

to get started. Simply uncompress the package/target/unomi-VERSION.tar.gz (for Linux or Mac OS X) or

package/target/unomi-VERSION.zip (for Windows) archive into the directory of your choice.

You can then start the server simply by using the command on UNIX/Linux/MacOS X :

./bin/karaf

or on Windows shell :

bin\karaf.bat

You will then need to launch (only on the first Karaf start) the Apache Unomi packages using the

following Apache Karaf shell command:

unomi:start

16.1.5. DEPLOYING INTO AN EXISTING KARAF SERVER

This is only needed if you didn’t use the generated package. Also, this is the preferred way to install a

development environment if you intend to re-deploy the context server KAR iteratively.

Additional requirements: * Apache Karaf 4.2.x, http://karaf.apache.org

Before deploying, make sure that you have Apache Karaf properly installed. Depending of your usage,

you may also have to increase the memory size by adjusting the following environment values in the

bin/setenv(.bat) files (at the end of the file):

 MY_DIRNAME=`dirname $0`

 MY_KARAF_HOME=`cd "$MY_DIRNAME/.."; pwd`

 export KARAF_OPTS="$KARAF_OPTS -Xmx3G"

Apache Unomi 2.x - Documentation - 185

http://localhost:9200
http://karaf.apache.org

Install the WAR support, CXF and Karaf Cellar into Karaf by doing the following in the Karaf command

line:

 feature:repo-add cxf-jaxrs 3.3.4

 feature:repo-add cellar 4.1.3

 feature:repo-add mvn:org.apache.unomi/unomi-kar/VERSION/xml/features

 feature:install unomi-kar

Create a new $MY_KARAF_HOME/etc/org.apache.cxf.osgi.cfg file and put the following property inside :

 org.apache.cxf.servlet.context=/cxs

If all went smoothly, you should be able to access the context script here :

http://localhost:8181/cxs/cluster . You should be able to login with karaf / karaf and see basic server

information. If not something went wrong during the install.

16.1.6. JDK SELECTION ON MAC OS X

You might need to select the JDK to run the tests in the itests subproject. In order to do so you can list the

installed JDKs with the following command :

/usr/libexec/java_home -V

which will output something like this :

Matching Java Virtual Machines (3):

 11.0.5, x86_64: "OpenJDK 11.0.5" /Library/Java/JavaVirtualMachines/openjdk-

11.jdk/Contents/Home

 1.8.0_181, x86_64: "Java SE 8" /Library/Java/JavaVirtualMachines/jdk1.8.0_181.jdk/Contents/Home

 1.7.0_80, x86_64: "Java SE 7" /Library/Java/JavaVirtualMachines/jdk1.7.0_80.jdk/Contents/Home

/Library/Java/JavaVirtualMachines/openjdk-11.jdk/Contents/Home

You can then select the one you want using :

export JAVA_HOME=`/usr/libexec/java_home -v 11.0.5`

and then check that it was correctly referenced using:

java -version

which should give you a result such as this:

Apache Unomi 2.x - Documentation - 186

http://localhost:8181/cxs/cluster

openjdk version "11.0.5" 2019-10-15

OpenJDK Runtime Environment (build 11.0.5+10)

OpenJDK 64-Bit Server VM (build 11.0.5+10, mixed mode)

16.1.7. RUNNING THE INTEGRATION TESTS

The integration tests are not executed by default to make build time minimal, but it is recommended to

run the integration tests at least once before using the server to make sure that everything is ok in the

build. Another way to use these tests is to run them from a continuous integration server such as

Jenkins, Apache Gump, Atlassian Bamboo or others.

Note : the integration tests require a JDK 11 or more recent !

To run the tests simply activate the following profile :

mvn -P integration-tests clean install

16.1.8. TESTING WITH AN EXAMPLE PAGE

A default test page is provided at the following URL:

 http://localhost:8181/index.html

This test page will trigger the loading of the /cxs/context.js script, which will try to retrieving the user

context or create a new one if it doesn’t exist yet. It also contains an experimental integration with

Facebook Login, but it doesn’t yet save the context back to the context server.

16.2. SSH SHELL COMMANDS

Apache Unomi provides its own Apache Karaf Shell commands to make it easy to control the application

lifecycle or perform queries or modifications on the internal state of the system.

All Apache Unomi-specific commands are namespaced and use the unomi: namespace. You can use the

Apache Karaf Shell’s autocompletion to list all the commands available.

16.2.1. USING THE SHELL

You can connect to the Apache Karaf SSH Shell using the following command:

ssh -p 8102 karaf@localhost

The default username/password is karaf/karaf. You should change this as soon as possible by editing the

etc/users.properties file.

Apache Unomi 2.x - Documentation - 187

Once connected you can simply type in :

unomi:

And hit the <tab> key to see the list of all the available Apache Unomi commands. Note that some

commands are only available when the application is started.

You can also use the help command on any command such as in the following example:

karaf@root()> help unomi:migrate

DESCRIPTION

 unomi:migrate

 This will Migrate your date in ES to be compliant with current version.

 It's possible to configure the migration using OSGI configuration file:

org.apache.unomi.migration.cfg,

 if no configuration is provided then questions will be prompted during the migration process.

SYNTAX

 unomi:migrate [fromVersionWithoutSuffix] [skipConfirmation]

ARGUMENTS

 fromVersionWithoutSuffix

 Origin version without suffix/qualifier (e.g: 1.2.0)

 (defaults to 1.2.0)

 skipConfirmation

 Should the confirmation before starting the migration process be skipped ?

 (defaults to false)

16.2.2. LIFECYCLE COMMANDS

The commands control the lifecycle of the Apache Unomi server and are used to migrate, start or stop

the server.

Table 3. Table Lifecycle commands

Command Arguments Description

migrate fromVersion This command must be used only

when the Apache Unomi

application is NOT STARTED. It

will perform migration of the

data stored in ElasticSearch using

the argument fromVersion as a

starting point.

stop n/a Shutsdown the Apache Unomi

application

Apache Unomi 2.x - Documentation - 188

Command Arguments Description

start n/a Starts the Apache Unomi

application. Note that this state

will be remembered between

Apache Karaf launches, so in

general it is only needed after a

first installation or after a

migrate command

version n/a Prints out the currently deployed

version of the Apache Unomi

application inside the Apache

Karaf runtime.

16.2.3. RUNTIME COMMANDS

These commands are available once the application is running. If an argument is between brackets [] it

means it is optional.

Table 4. Table Runtime commands

Command Arguments Description

rule-list [maxEntries] [--csv] Lists all the rules registered in

the Apache Unomi server. The

maxEntries (defaults to 100) will

allow you to specify how many

entries need to be retrieved. If

the value is inferior to the total

value, a message will display the

total value of rules registered in

the server. If you add the "--csv"

option the list will be output as a

CSV formatted table

rule-view rule-id Dumps a single rule in JSON. The

rule-id argument can be

retrieved from the rule-list

command output.

rule-remove rule-id Removes a single rule from

Apache Unomi. The rule-id

argument can be retrieved from

the rule-list command output.

Warning: no confirmation is

asked, be careful with this

command.

Apache Unomi 2.x - Documentation - 189

Command Arguments Description

rule-reset-stats n/a Resets the rule statistics. This is

notably useful when trying to

understand rule performance

and impact

rule-tail n/a Dumps any rule that is executed

by the server. Only executed

rules are logged here. If you want

to have more detailed

information about a particular

rule’s condition evaluation and if

it’s already been raised use the

rule-watch command instead.

This tail will continue until a

CTRL+C key combination is

pressed.

rule-watch rule-ids Dumps detailed evaluation and

execution information about the

rules that are where specified in

the rule-ids arguments (you can

specify multiple rule identifiers

separated by spaces). The Status

column has the following values:

EVALUATE - indicates that the

rule’s conditions are being

evaluated (but they might not be

satisfied), AR PROFILE - means

the rule has already been raised

for the profile and will therefore

not execute again for this profile,

AR SESSION - means the rule has

already been executed for this

session and will therefore only

executed when another session

for the profile is created,

EXECUTE means the rule’s

actions are being executed.

event-tail n/a Dumps any incoming events to

the Apache Unomi server to the

console. Use CTRL+C to exit tail

event-view event-id Dumps a single event in JSON.

The event-id can be retrieved

from the event-tail command

output.

Apache Unomi 2.x - Documentation - 190

Command Arguments Description

event-list [max-entries] [event-type] [--csv] List the last events processed by

Apache Unomi. The max-entries

parameter can be used to control

how many events are displayed

(default is 100). The event-type

makes it possible to filter the list

by event type. The --csv argument

is used to output the list as a CSV

list instead of an ASCII table.

event-search profile-id [event-type] [max-

entries]

This command makes it possible

to search for the last events by

profile-id and by event-type. A

max-entries parameter (with a

default value of 100) is also

accepted to control the number

of results returned by the search.

action-list [--csv] Lists all the rule actions

registered in the Apache Unomi

server. This command is useful

when developing plugins to

check that everything is properly

registered. If you add the "--csv"

option the list will be output as a

CSV formatted table

action-view action-id Dumps a single action in JSON.

The action-id argument can be

retrieved from the action-list

command output.

condition-list [csv] List all the conditions registered

in the server. If you add the "--

csv" option the list will be output

as a CSV formatted table

condition-view condition-id Dumps a single condition in

JSON. The condition-id can be

retrieved from the condition-list

command output.

profile-list [--csv] List the last 10 modified profiles.

If you add the "--csv" option the

list will be output as a CSV

formatted table

Apache Unomi 2.x - Documentation - 191

Command Arguments Description

profile-view profile-id Dumps a single profile in JSON.

The profile-id argument can be

retrieved from the profile-list

command output.

profile-remove profile-id Removes a profile identified by

profile-id argument. Warning: no

confirmation is asked so be

careful with this command!

segment-list [--csv] Lists all the segments registered

in the Apache Unomi server. If

you add the "--csv" option the list

will be output as a CSV formatted

table

segment-view segment-id Dumps a single segment in JSON.

The segment-id argument can be

retrieved from the segment-list

command output.

segment-remove segment-id Removes a single segment

identified by the segment-id

argument. Warning: no

confirmation is asked so be

careful with this command!

session-list [--csv] Lists the last 10 sessions by last

event date. If you add the "--csv"

option the list will be output as a

CSV formatted table

session-view session-id Dumps a single session in JSON.

The session-id argument can be

retrieved from the session-list,

profile-list or event-tail command

output.

Apache Unomi 2.x - Documentation - 192

Command Arguments Description

deploy-definition [bundleId] [type] [fileName] This command can be used to

force redeployment of definitions

from bundles. By default existing

definitions will not be overriden

unless they come from

SNAPSHOT bundles. Using this

command you can override this

mechanism. Here are some

examples of using this command:

unomi:deploy-definition 175 rule

* will redeploy all the rules

provided by bundle with id 175.

If you launch the command

without any arguments you will

get prompts for what you want to

deploy from which bundle. If you

want to deploy all the definitions

of a bundle you can also use

wildcards such as in the

following example: deploy-

definition 175 * *. It is also

possible to give no argument to

this command and it will then

interactively request the

definitions you want to deploy.

undeploy-definition [bundleId] [type] [fileName] This command does the opposite

of the deploy-definition

command and works exactly the

same way in terms of arguments

and interactive mode except that

it undeploys definitions instead

of deploying them. This

command can be very useful

when working on a plugin. For

example to remove all the

definitions deployed by a plugin

you can simply use the following

command: undeploy-definition

BUNDLE_ID * * when BUNDLE_ID

is the identifier of the bundle that

contains your plugin.

16.3. WRITING PLUGINS

Unomi is architected so that users can provided extensions in the form of plugins.

Apache Unomi 2.x - Documentation - 193

16.4. TYPES VS. INSTANCES

Several extension points in Unomi rely on the concept of type: a plugin defines a prototype for what the

actual items will be once parameterized with values known only at runtime. This is similar to the

concept of classes in object-oriented programming: types define classes, providing the expected

structure and which fields are expected to be provided at runtime, that are then instantiated when

needed with actual values.

So for example we have the following types vs instances:

• ConditionTypes vs Conditions

• ActionTypes vs Actions

• PropertyTypes vs Properties (for profiles and sessions)

16.5. PLUGIN STRUCTURE

Being built on top of Apache Karaf, Unomi leverages OSGi to support plugins. A Unomi plugin is, thus, an

OSGi bundle specifying some specific metadata to tell Unomi the kind of entities it provides. A plugin can

provide the following entities to extend Unomi, each with its associated definition (as a JSON file),

located in a specific spot within the META-INF/cxs/ directory of the bundle JAR file:

Entity Location in cxs directory

ActionType actions

ConditionType conditions

Persona personas

PropertyMergeStrategyType mergers

PropertyType properties then profiles or sessions subdirectory

then <category name> directory

Rule rules

Scoring scorings

Segment segments

ValueType values

Blueprint is used to declare what the plugin provides and inject any required dependency. The Blueprint

file is located, as usual, at OSGI-INF/blueprint/blueprint.xml in the bundle JAR file.

The plugin otherwise follows a regular maven project layout and should depend on the Unomi API

maven artifact:

Apache Unomi 2.x - Documentation - 194

http://aries.apache.org/modules/blueprint.html

<dependency>

 <groupId>org.apache.unomi</groupId>

 <artifactId>unomi-api</artifactId>

 <version>...</version>

</dependency>

Some plugins consists only of JSON definitions that are used to instantiate the appropriate structures at

runtime while some more involved plugins provide code that extends Unomi in deeper ways.

In both cases, plugins can provide more that one type of extension. For example, a plugin could provide

both `ActionType`s and `ConditionType`s.

16.6. EXTENSION POINTS

In this section the value types that may be used as extension points are presented. Examples of these

types will be given in the next section with more details.

16.6.1. ACTIONTYPE

ActionType`s define new actions that can be used as consequences of Rules being triggered. When a rule

triggers, it creates new actions based on the event data and the rule internal processes, providing values

for parameters defined in the associated `ActionType. Example actions include: “Set user property x to

value y” or “Send a message to service x”.

16.6.2. CONDITIONTYPE

`ConditionType`s define new conditions that can be applied to items (for example to decide whether a

rule needs to be triggered or if a profile is considered as taking part in a campaign) or to perform

queries against the stored Unomi data. They may be implemented in Java when attempting to define a

particularly complex test or one that can better be optimized by coding it. They may also be defined as

combination of other conditions. A simple condition could be: “User is male”, while a more generic

condition with parameters may test whether a given property has a specific value: “User property x has

value y”.

16.6.3. PERSONA

A persona is a "virtual" profile used to represent categories of profiles, and may also be used to test how

a personalized experience would look like using this virtual profile. A persona can define predefined

properties and sessions. Persona definition make it possible to “emulate” a certain type of profile, e.g :

US visitor, non-US visitor, etc.

16.6.4. PROPERTYMERGESTRATEGYTYPE

A strategy to resolve how to merge properties when merging profile together.

Apache Unomi 2.x - Documentation - 195

16.6.5. PROPERTYTYPE

Definition for a profile or session property, specifying how possible values are constrained, if the value

is multi-valued (a vector of values as opposed to a scalar value). `PropertyType`s can also be

categorized using systemTags or file system structure, using sub-directories to organize definition files.

16.6.6. RULE

`Rule`s are conditional sets of actions to be executed in response to incoming events. Triggering of rules

is guarded by a condition: the rule is only triggered if the associated condition is satisfied. That condition

can test the event itself, but also the profile or the session. Once a rule triggers, a list of actions can be

performed as consequences. Also, when rules trigger, a specific event is raised so that other parts of

Unomi can react accordingly.

16.6.7. SCORING

`Scoring`s are set of conditions associated with a value to assign to profiles when matching so that the

associated users can be scored along that dimension. Each scoring element is evaluated and matching

profiles' scores are incremented with the associated value.

16.6.8. SEGMENTS

`Segment`s represent dynamically evaluated groups of similar profiles in order to categorize the

associated users. To be considered part of a given segment, users must satisfies the segment’s condition.

If they match, users are automatically added to the segment. Similarly, if at any given point during, they

cease to satisfy the segment’s condition, they are automatically removed from it.

16.6.9. TAG

`Tag`s are simple labels that are used to classify all other objects inside Unomi.

16.6.10. VALUETYPE

Definition for values that can be assigned to properties ("primitive" types).

16.7. CUSTOM PLUGINS

Apache Unomi is a pluggeable server that may be extended in many ways. This document assumes you

are familiar with the Apache Unomi Data Model . This document is mostly a reference document on the

different things that may be used inside an extension. If you are looking for complete samples, please

see the samples page.

16.7.1. CREATING A PLUGIN

An plugin is simply a Maven project, with a Maven pom that looks like this:

Apache Unomi 2.x - Documentation - 196

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-

4.0.0.xsd">

 <parent>

 <groupId>org.apache.unomi</groupId>

 <artifactId>unomi-plugins</artifactId>

 <version>${project.version}</version>

 </parent>

 <modelVersion>4.0.0</modelVersion>

 <artifactId>unomi-plugin-example</artifactId>

 <name>Apache Unomi :: Plugins :: Example</name>

 <description>A sample example of a Unomi plugin</description>

 <version>${project.version}</version>

 <packaging>bundle</packaging>

 <dependencies>

 <!-- This dependency is not required but generally used in plugins -->

 <dependency>

 <groupId>org.apache.unomi</groupId>

 <artifactId>unomi-api</artifactId>

 <version>${project.version}</version>

 <scope>provided</scope>

 </dependency>

 </dependencies>

 <build>

 <plugins>

 <plugin>

 <groupId>org.apache.felix</groupId>

 <artifactId>maven-bundle-plugin</artifactId>

 <extensions>true</extensions>

 <configuration>

 <instructions>

 <Embed-Dependency>*;scope=compile|runtime</Embed-Dependency>

 <Import-Package>

 sun.misc;resolution:=optional,

 *

 </Import-Package>

 </instructions>

 </configuration>

 </plugin>

 </plugins>

 </build>

</project>

A plugin may contain many different kinds of Apache Unomi objects, as well as custom OSGi services or

anything that is needed to build your application.

16.7.2. DEPLOYMENT AND CUSTOM DEFINITION

When you deploy a custom bundle with a custom definition (see "Predefined xxx" chapters under) for

Apache Unomi 2.x - Documentation - 197

the first time, the definition will automatically be deployed at your bundle start event if it does not

exist. After that if you redeploy the same bundle, the definition will not be redeployed, but you can

redeploy it manually using the command unomi:deploy-definition <bundleId> <fileName> If you need to

modify an existing definition when deploying the module, see Migration patches.

16.7.3. PREDEFINED SEGMENTS

You may provide pre-defined segments by simply adding a JSON file in the src/main/resources/META-

INF/cxs/segments directory of your Maven project. Here is an example of a pre-defined segment:

{

 "metadata": {

 "id": "leads",

 "name": "Leads",

 "scope": "systemscope",

 "description": "You can customize the list below by editing the leads segment.",

 "readOnly":true

 },

 "condition": {

 "parameterValues": {

 "subConditions": [

 {

 "parameterValues": {

 "propertyName": "properties.leadAssignedTo",

 "comparisonOperator": "exists"

 },

 "type": "profilePropertyCondition"

 }

],

 "operator" : "and"

 },

 "type": "booleanCondition"

 }

}

Basically this segment uses a condition to test if the profile has a property leadAssignedTo that exists. All

profiles that match this condition will be part of the pre-defined segment.

16.7.4. PREDEFINED RULES

You may provide pre-defined rules by simply adding a JSON file in the src/main/resources/META-

INF/cxs/rules directory of your Maven project. Here is an example of a pre-defined rule:

Apache Unomi 2.x - Documentation - 198

{

 "metadata" : {

 "id": "evaluateProfileSegments",

 "name": "Evaluate segments",

 "description" : "Evaluate segments when a profile is modified",

 "readOnly":true

 },

 "condition" : {

 "type": "profileUpdatedEventCondition",

 "parameterValues": {

 }

 },

 "actions" : [

 {

 "type": "evaluateProfileSegmentsAction",

 "parameterValues": {

 }

 }

]

}

In this example we provide a rule that will execute when a predefined composed condition of type

"profileUpdatedEventCondition" is received. See below to see how predefined composed conditions are

declared. Once the condition is matched, the actions will be executed in sequence. In this example there

is only a single action of type "evaluateProfileSegmentsAction" that is defined so it will be executed by

Apache Unomi’s rule engine. You can also see below how custom actions may be defined.

16.7.5. PREDEFINED PROPERTIES

By default Apache Unomi comes with a set of pre-defined properties, but in many cases it is useful to add

additional predefined property definitions. You can create property definitions for session or profile

properties by creating them in different directories.

For session properties you must create a JSON file in the following directory in your Maven project:

src/main/resources/META-INF/cxs/properties/sessions

For profile properties you must create the JSON file inside the directory in your Maven project:

src/main/resources/META-INF/cxs/properties/profiles

Here is an example of a property definition JSON file

Apache Unomi 2.x - Documentation - 199

{

 "metadata": {

 "id": "city",

 "name": "City",

 "systemTags": ["properties", "profileProperties", "contactProfileProperties"]

 },

 "type": "string",

 "defaultValue": "",

 "automaticMappingsFrom": [],

 "rank": "304.0"

}

16.7.6. PREDEFINED CHILD CONDITIONS

You can define new predefined conditions that are actually conditions inheriting from a parent

condition and setting pre-defined parameter values. You can do this by creating a JSON file in:

src/main/resources/META-INF/cxs/conditions

Here is an example of a JSON file that defines a profileUpdateEventCondition that inherits from a parent

condition of type eventTypeCondition.

{

 "metadata": {

 "id": "profileUpdatedEventCondition",

 "name": "profileUpdatedEventCondition",

 "description": "",

 "systemTags": [

 "event",

 "eventCondition"

],

 "readOnly": true

 },

 "parentCondition": {

 "type": "eventTypeCondition",

 "parameterValues": {

 "eventTypeId": "profileUpdated"

 }

 },

 "parameters": [

]

}

16.7.7. PREDEFINED PERSONAS

Personas may also be pre-defined by creating JSON files in the following directory:

Apache Unomi 2.x - Documentation - 200

src/main/resources/META-INF/cxs/personas

Here is an example of a persona definition JSON file:

{

 "persona": {

 "itemId": "usVisitor",

 "properties": {

 "description": "Represents a visitor browsing from inside the continental US",

 "firstName": "U.S.",

 "lastName": "Visitor"

 },

 "segments": []

 },

 "sessions": [

 {

 "itemId": "aa3b04bd-8f4d-4a07-8e96-d33ffa04d3d9",

 "profileId": "usVisitor",

 "properties": {

 "operatingSystemName": "OS X 10.9 Mavericks",

 "sessionCountryName": "United States",

 "location": {

 "lat":37.422,

 "lon":-122.084058

 },

 "userAgentVersion": "37.0.2062.120",

 "sessionCountryCode": "US",

 "deviceCategory": "Personal computer",

 "operatingSystemFamily": "OS X",

 "userAgentName": "Chrome",

 "sessionCity": "Mountain View"

 },

 "timeStamp": "2014-09-18T11:40:54Z",

 "lastEventDate": "2014-09-18T11:40:59Z",

 "duration": 4790

 }

]

}

You can see that it’s also possible to define sessions for personas.

16.7.8. CUSTOM ACTION TYPES

Custom action types are a powerful way to integrate with external systems by being able to define

custom logic that will be executed by an Apache Unomi rule. An action type is defined by a JSON file

created in the following directory:

src/main/resources/META-INF/cxs/actions

Here is an example of a JSON action definition:

Apache Unomi 2.x - Documentation - 201

{

 "metadata": {

 "id": "addToListsAction",

 "name": "addToListsAction",

 "description": "",

 "systemTags": [

 "demographic",

 "availableToEndUser"

],

 "readOnly": true

 },

 "actionExecutor": "addToLists",

 "parameters": [

 {

 "id": "listIdentifiers",

 "type": "string",

 "multivalued": true

 }

]

}

The actionExecutor identifier refers to a service property that is defined in the OSGi Blueprint service

registration. Note that any OSGi service registration may be used, but in these examples we use OSGi

Blueprint. The definition for the above JSON file will be found in a file called src/main/resources/OSGI-

INF/blueprint/blueprint.xml with the following content:

<?xml version="1.0" encoding="UTF-8"?>

<blueprint xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"

 xsi:schemaLocation="http://www.osgi.org/xmlns/blueprint/v1.0.0

http://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd">

 <reference id="profileService" interface="org.apache.unomi.api.services.ProfileService"/>

 <reference id="eventService" interface="org.apache.unomi.api.services.EventService"/>

 <!-- Action executors -->

 <service interface="org.apache.unomi.api.actions.ActionExecutor">

 <service-properties>

 <entry key="actionExecutorId" value="addToLists"/>

 </service-properties>

 <bean class="org.apache.unomi.lists.actions.AddToListsAction">

 <property name="profileService" ref="profileService"/>

 <property name="eventService" ref="eventService"/>

 </bean>

 </service>

</blueprint>

You can note here the actionExecutorId that corresponds to the actionExecutor in the JSON file.

The implementation of the action is available here : org.apache.unomi.lists.actions.AddToListsAction

Apache Unomi 2.x - Documentation - 202

https://github.com/apache/unomi/blob/master/extensions/lists-extension/actions/src/main/java/org/apache/unomi/lists/actions/AddToListsAction.java

16.7.9. CUSTOM CONDITION TYPES

Custom condition types are different from predefined child conditions because they implement their

logic using Java classes. They are also declared by adding a JSON file into the conditions directory:

src/main/resources/META-INF/cxs/conditions

Here is an example of JSON custom condition type definition:

{

 "metadata": {

 "id": "matchAllCondition",

 "name": "matchAllCondition",

 "description": "",

 "systemTags": [

 "logical",

 "profileCondition",

 "eventCondition",

 "sessionCondition",

 "sourceEventCondition"

],

 "readOnly": true

 },

 "conditionEvaluator": "matchAllConditionEvaluator",

 "queryBuilder": "matchAllConditionESQueryBuilder",

 "parameters": [

]

}

Note the conditionEvaluator and the queryBuilder values. These reference OSGi service properties that

are declared in an OSGi Blueprint configuration file (other service definitions may also be used such as

Declarative Services or even Java registered services). Here is an example of an OSGi Blueprint

definition corresponding to the above JSON condition type definition file.

Apache Unomi 2.x - Documentation - 203

src/main/resources/OSGI-INF/blueprint/blueprint.xml

<blueprint xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"

 xsi:schemaLocation="http://www.osgi.org/xmlns/blueprint/v1.0.0

http://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd">

 <service

interface="org.apache.unomi.persistence.elasticsearch.conditions.ConditionESQueryBuilder">

 <service-properties>

 <entry key="queryBuilderId" value="matchAllConditionESQueryBuilder"/>

 </service-properties>

 <bean

class="org.apache.unomi.plugins.baseplugin.conditions.MatchAllConditionESQueryBuilder"/>

 </service>

 <service interface="org.apache.unomi.persistence.elasticsearch.conditions.ConditionEvaluator">

 <service-properties>

 <entry key="conditionEvaluatorId" value="matchAllConditionEvaluator"/>

 </service-properties>

 <bean class="org.apache.unomi.plugins.baseplugin.conditions.MatchAllConditionEvaluator"/>

 </service>

</blueprint>

You can find the implementation of the two classes here :

• org.apache.unomi.plugins.baseplugin.conditions.MatchAllConditionESQueryBuilder

• org.apache.unomi.plugins.baseplugin.conditions.MatchAllConditionEvaluator

16.8. MIGRATION PATCHES

You may provide patches on any predefined items by simply adding a JSON file in :

src/main/resources/META-INF/cxs/patches

These patches will be applied when the module will be deployed the first time. They allow to modify an

item, that would have been previously deployed on unomi by a previous version of the extension or by

something else.

Each patch must have a unique id - unomi will use this id to remember that the patch has already been

applied. It can also be used to reapply the patch when need by using the karaf command unomi:deploy-

definition

A patch also need to reference the item to patch by setting patchedItemId and patchedItemType, and an

operation that tells what the patch should do.

patchedItemType can take one of the following value:

Apache Unomi 2.x - Documentation - 204

https://github.com/apache/unomi/blob/master/plugins/baseplugin/src/main/java/org/apache/unomi/plugins/baseplugin/conditions/MatchAllConditionESQueryBuilder.java
https://github.com/apache/unomi/blob/master/plugins/baseplugin/src/main/java/org/apache/unomi/plugins/baseplugin/conditions/MatchAllConditionEvaluator.java

• condition

• action

• goal

• campaign

• persona

• propertyType

• rule

• segment

• scoring

operation can take one of the following value:

• patch

• override

• remove

You can apply a patch in json-patch format in the data field, and by specifying operation patch like in

this example :

{

 "itemId": "firstName-patch1",

 "patchedItemId": "firstName",

 "patchedItemType": "propertyType",

 "operation": "patch",

 "data": [

 {

 "op": "replace", "path": "/defaultValue", "value": "foo"

 }

]

}

If you need to completely redeploy a definition, you can use the override operation and put the

definition in data

Apache Unomi 2.x - Documentation - 205

http://jsonpatch.com/

{

 "itemId": "gender-patch1",

 "patchedItemId": "gender",

 "patchedItemType": "propertyType",

 "operation": "override",

 "data": {

 "metadata": {

 "id": "gender",

 "name": "Gender",

 "systemTags": [

 "properties",

 "profileProperties"

]

 },

 "type": "string",

 "defaultValue": "foo",

 "automaticMappingsFrom": [],

 "rank": "105.0"

 }

}

It is also possible to simply remove an item by using the operation remove :

{

 "itemId": "firstName-patch2",

 "patchedItemId": "firstName",

 "patchedItemType": "propertyType",

 "operation": "remove"

}

Patches can also be deployed at runtime by using the REST endpoint /patch/apply .

Apache Unomi 2.x - Documentation - 206

	Apache Unomi 2.x - Documentation
	Table of Contents
	1. What’s new
	1.1. What’s new in Apache Unomi 2.0
	1.1.1. Introducing profiles aliases
	1.1.2. Scopes declarations are now required
	1.1.3. JSON Schemas
	1.1.4. Updated data model
	1.1.5. New Web Tracker
	1.1.6. GraphQL API - beta
	1.1.7. Migrate from Unomi 1.x
	1.1.8. Elasticsearch compatibility

	2. Discover Unomi
	2.1. Quick start with Docker
	2.2. Quick Start manually
	2.3. Getting started with Unomi
	2.3.1. Prerequisites
	2.3.2. Running Unomi

	2.4. Unomi web tracking tutorial
	2.4.1. Installing the web tracker in a web page
	2.4.2. Creating a scope to collect the data
	2.4.3. Using tracker in your own JavaScript projects
	2.4.4. Viewing collected events
	2.4.5. Viewing the current profile
	2.4.6. Adding a rule
	2.4.7. Adding personalization
	2.4.8. Conclusion
	2.4.9. Next steps

	3. Apache Unomi Recipes and requests
	3.1. Recipes
	3.1.1. Introduction
	3.1.2. Enabling debug mode
	3.1.3. How to read a profile
	3.1.4. How to update a profile from the public internet
	3.1.5. How to search for profile events
	3.1.6. How to create a new rule
	3.1.7. How to search for profiles
	3.1.8. Getting / updating consents
	3.1.9. How to send a login event to Unomi
	3.1.10. What profile aliases are and how to use them

	3.2. Request examples
	3.2.1. Retrieving your first context
	3.2.2. Retrieving a context as a JSON object.
	3.2.3. Accessing profile properties in a context
	3.2.4. Sending events using the context servlet
	3.2.5. Sending events using the eventcollector servlet
	3.2.6. Where to go from here

	4. Configuration
	4.1. Centralized configuration
	4.2. Changing the default configuration using environment variables (i.e. Docker configuration)
	4.3. Changing the default configuration using property files
	4.4. Secured events configuration
	4.5. Installing the MaxMind GeoIPLite2 IP lookup database
	4.6. Installing Geonames database
	4.7. REST API Security
	4.8. Scripting security
	4.8.1. Multi-layer scripting filtering system
	4.8.2. Scripts and expressions
	4.8.3. Scripting expression filtering configuration parameters
	4.8.4. Groovy Actions
	4.8.5. Scripting roadmap

	4.9. Automatic profile merging
	4.10. Securing a production environment
	4.11. Integrating with an Apache HTTP web server
	4.12. Changing the default tracking location
	4.13. Apache Karaf SSH Console
	4.14. ElasticSearch authentication and security
	4.14.1. User authentication !
	4.14.2. SSL communication
	4.14.3. Permissions

	4.15. Health Check Extension
	4.15.1. Configuration

	5. JSON schemas
	5.1. Introduction
	5.1.1. What is a JSON Schema
	5.1.2. Key concepts
	5.1.3. How are JSON Schema used in Unomi

	5.2. JSON schema API
	5.2.1. List existing schemas
	5.2.2. Read a schema
	5.2.3. Create / update a JSON schema to validate an event
	5.2.4. Deleting a schema
	5.2.5. Error Management
	5.2.6. Details on invalid events

	5.3. Develop with Unomi and JSON Schemas
	5.3.1. Logs in debug mode
	5.3.2. validateEvent endpoint
	5.3.3. validateEvents endpoint

	5.4. Extend an existing schema
	5.4.1. When a extension is needed?
	5.4.2. Understanding how extensions are merged in unomi
	5.4.3. How to add an extension through the API

	6. GraphQL API
	6.1. Introduction
	6.2. Enabling the API
	6.3. Endpoints
	6.4. GraphQL Schema
	6.5. Graphql request examples
	6.5.1. Retrieving your first profile
	6.5.2. Updating profile
	6.5.3. Restricted methods
	6.5.4. Deleting profile
	6.5.5. Where to go from here

	7. Migrations
	7.1. From version 1.6 to 2.0
	7.2. Migration Overview
	7.3. Updating applications consuming Unomi
	7.3.1. Data Model changes
	7.3.2. Create JSON schemas

	7.4. Migrating your existing data
	7.4.1. Elasticsearch version and capacity
	7.4.2. Migrate custom data
	7.4.3. Perform the migration

	7.5. From version 1.5 to 1.6
	7.6. From version 1.4 to 1.5
	7.6.1. Data model and ElasticSearch 7
	7.6.2. API changes
	7.6.3. Migration steps

	7.7. Important changes in public servlets since version 1.5.5 and 2.0.0

	8. Queries and aggregations
	8.1. Query counts
	8.2. Metrics
	8.3. Aggregations
	8.3.1. Aggregation types

	9. Profile import & export
	9.1. Importing profiles
	9.1.1. Import API

	9.2. Exporting profiles
	9.2.1. Export API

	9.3. Configuration in details

	10. Consent management
	10.1. Consent API
	10.1.1. Profiles with consents
	10.1.2. Consent type definitions
	10.1.3. Creating / update a visitor consent
	10.1.4. How it works (internally)

	11. Privacy management
	11.1. Setting up access to the privacy endpoint
	11.2. Anonymizing a profile
	11.3. Downloading profile data
	11.4. Deleting a profile
	11.5. Related

	12. Cluster setup
	12.1. Cluster setup

	13. Reference
	13.1. Useful Apache Unomi URLs
	13.2. How profile tracking works
	13.2.1. Steps

	13.3. Context Request Flow
	13.4. Data Model Overview
	13.5. Scope
	13.5.1. Example

	13.6. Item
	13.6.1. Structure definition

	13.7. Metadata
	13.7.1. Structure definition
	13.7.2. Example

	13.8. MetadataItem
	13.8.1. Structure definition
	13.8.2. Example

	13.9. Event
	13.9.1. Fields
	13.9.2. Event types

	13.10. Profile
	13.10.1. Structure definition
	13.10.2. Example

	13.11. Profile aliases
	13.11.1. Structure definition
	13.11.2. Example

	13.12. Persona
	13.12.1. Structure definition
	13.12.2. Example

	13.13. Consent
	13.13.1. Structure definition
	13.13.2. Example

	13.14. Session
	13.14.1. Structure definition
	13.14.2. Example

	13.15. Segment
	13.15.1. Structure definition
	13.15.2. Example

	13.16. Condition
	13.16.1. Structure definition
	13.16.2. Example

	13.17. Rule
	13.17.1. Structure definition
	13.17.2. Example

	13.18. Action
	13.18.1. Structure definition
	13.18.2. Example

	13.19. List
	13.19.1. Structure definition
	13.19.2. Example

	13.20. Goal
	13.20.1. Structure definition
	13.20.2. Example

	13.21. Campaign
	13.21.1. Structure definition
	13.21.2. Example

	13.22. Scoring plan
	13.22.1. Structure definition
	13.22.2. Example

	13.23. Built-in Event types
	13.23.1. Login event type
	13.23.2. View event type
	13.23.3. Form event type
	13.23.4. Update properties event type
	13.23.5. Identify event type
	13.23.6. Session created event type
	13.23.7. Goal event type
	13.23.8. Modify consent event type

	13.24. Built-in condition types
	13.24.1. Existing condition type descriptors

	13.25. Built-in action types
	13.25.1. Existing action types descriptors

	13.26. Updating Events Using the Context Servlet
	13.26.1. Solution
	13.26.2. Defining Rules

	13.27. Unomi Web Tracker reference
	13.27.1. Custom events
	13.27.2. Integrating with tag managers
	13.27.3. Cookie/session handling
	13.27.4. JavaScript API

	14. Integration samples
	14.1. Samples
	14.2. Login sample
	14.2.1. Warning !
	14.2.2. Installing the samples

	14.3. Twitter sample
	14.3.1. Overview
	14.3.2. Interacting with the context server
	14.3.3. Retrieving context information from Unomi using the context servlet

	14.4. Example
	14.4.1. HTML page
	14.4.2. Javascript

	14.5. Conclusion
	14.6. Annex
	14.7. Weather update sample

	15. Connectors
	15.1. Connectors
	15.1.1. Call for contributors

	15.2. Salesforce Connector
	15.2.1. Getting started
	15.2.2. Properties
	15.2.3. Hot-deploying updates to the Salesforce connector (for developers)
	15.2.4. Using the Salesforce Workbench for testing REST API
	15.2.5. Setting up Streaming Push queries
	15.2.6. Executing the unit tests

	16. Developers
	16.1. Building
	16.1.1. Initial Setup
	16.1.2. Building
	16.1.3. Installing an ElasticSearch server
	16.1.4. Deploying the generated binary package
	16.1.5. Deploying into an existing Karaf server
	16.1.6. JDK Selection on Mac OS X
	16.1.7. Running the integration tests
	16.1.8. Testing with an example page

	16.2. SSH Shell Commands
	16.2.1. Using the shell
	16.2.2. Lifecycle commands
	16.2.3. Runtime commands

	16.3. Writing Plugins
	16.4. Types vs. instances
	16.5. Plugin structure
	16.6. Extension points
	16.6.1. ActionType
	16.6.2. ConditionType
	16.6.3. Persona
	16.6.4. PropertyMergeStrategyType
	16.6.5. PropertyType
	16.6.6. Rule
	16.6.7. Scoring
	16.6.8. Segments
	16.6.9. Tag
	16.6.10. ValueType

	16.7. Custom plugins
	16.7.1. Creating a plugin
	16.7.2. Deployment and custom definition
	16.7.3. Predefined segments
	16.7.4. Predefined rules
	16.7.5. Predefined properties
	16.7.6. Predefined child conditions
	16.7.7. Predefined personas
	16.7.8. Custom action types
	16.7.9. Custom condition types

	16.8. Migration patches

